Nous présentons un théorème de congruence pour les surfaces minimales en avec angle de contact constant en utilisant les équations de Gauss–Codazzi–Ricci. Plus précisémént, nous prouvons que les équations de Gauss–Codazzi–Ricci pour les surfaces minimales en avec angle de contact constant satisfont une équation pour le Laplacien de l'angle holomorphe.
We provide a congruence theorem for minimal surfaces in with constant contact angle using the Gauss–Codazzi–Ricci equations. More precisely, we prove that the Gauss–Codazzi–Ricci equations for minimal surfaces in with constant contact angle satisfy an equation for the Laplacian of the holomorphic angle.
Accepté le :
Publié le :
@article{CRMATH_2008__346_23-24_1275_0, author = {Montes, Rodrigo Ristow}, title = {A congruence theorem for minimal surfaces in $ {S}^{5}$ with constant contact angle}, journal = {Comptes Rendus. Math\'ematique}, pages = {1275--1278}, publisher = {Elsevier}, volume = {346}, number = {23-24}, year = {2008}, doi = {10.1016/j.crma.2008.10.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.10.013/} }
TY - JOUR AU - Montes, Rodrigo Ristow TI - A congruence theorem for minimal surfaces in $ {S}^{5}$ with constant contact angle JO - Comptes Rendus. Mathématique PY - 2008 SP - 1275 EP - 1278 VL - 346 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.10.013/ DO - 10.1016/j.crma.2008.10.013 LA - en ID - CRMATH_2008__346_23-24_1275_0 ER -
%0 Journal Article %A Montes, Rodrigo Ristow %T A congruence theorem for minimal surfaces in $ {S}^{5}$ with constant contact angle %J Comptes Rendus. Mathématique %D 2008 %P 1275-1278 %V 346 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.10.013/ %R 10.1016/j.crma.2008.10.013 %G en %F CRMATH_2008__346_23-24_1275_0
Montes, Rodrigo Ristow. A congruence theorem for minimal surfaces in $ {S}^{5}$ with constant contact angle. Comptes Rendus. Mathématique, Tome 346 (2008) no. 23-24, pp. 1275-1278. doi : 10.1016/j.crma.2008.10.013. http://www.numdam.org/articles/10.1016/j.crma.2008.10.013/
[1] Sympletic Geometry, Progress in Mathematics, vol. 124, Springer-Verlag, Berlin–New York, 1992
[2] Minimal surfaces by moving frames, Amer. J. Math., Volume 105 (1983), pp. 59-83
[3] On a parametrization of minimal immersions into , Tohoku Math. J., Volume 27 (1975), pp. 83-90
[4] Contact angle for immersed surfaces in , Differential Geom. Appl., Volume 25 (2007), pp. 92-100
Cité par Sources :