Numerical Analysis
A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations
[Une évaluation monotone de brones fiables pour la constante inf-sup dans la méthode de l'approximation des bases réduites]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 23-24, pp. 1295-1300.

Un ingrédient fondamental de l'analyse a posteriori pour l'approximation par méthode par bases réduites de problèmes coercifs ou non coercifs est la définition de bornes fiables pour la constante de coercivité ou la constante inf-sup. Dans cette Note, nous généralisons et améliorons la méthode d'optimisation linéaire de contraintes successives présentées dans Huynh (2007), en proposant une version monotone de cet algorithme qui conduit à la fois à des évaluations plus stables et un nombre réduit de calculs hors ligne.

For accurate a posteriori error analysis of the reduced basis method for coercive and non-coercive problems, a critical ingredient lies in the evaluation of a lower bound for the coercivity or inf-sup constant. In this short Note, we generalize and improve the successive constraint method first presented by Huynh (2007) by providing a monotonic version of this algorithm that leads to both more stable evaluations and fewer offline computations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.10.012
Chen, Yanlai 1 ; Hesthaven, Jan S. 1 ; Maday, Yvon 1, 2 ; Rodríguez, Jerónimo 3

1 Division of Applied Mathematics, Brown University, 182, George St, Providence, RI 02912, USA
2 UPMC Université Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France
3 Laboratoire POEMS, 32, boulevard Victor, 75739 Paris cedex 15, France
@article{CRMATH_2008__346_23-24_1295_0,
     author = {Chen, Yanlai and Hesthaven, Jan S. and Maday, Yvon and Rodr{\'\i}guez, Jer\'onimo},
     title = {A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1295--1300},
     publisher = {Elsevier},
     volume = {346},
     number = {23-24},
     year = {2008},
     doi = {10.1016/j.crma.2008.10.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.10.012/}
}
TY  - JOUR
AU  - Chen, Yanlai
AU  - Hesthaven, Jan S.
AU  - Maday, Yvon
AU  - Rodríguez, Jerónimo
TI  - A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 1295
EP  - 1300
VL  - 346
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.10.012/
DO  - 10.1016/j.crma.2008.10.012
LA  - en
ID  - CRMATH_2008__346_23-24_1295_0
ER  - 
%0 Journal Article
%A Chen, Yanlai
%A Hesthaven, Jan S.
%A Maday, Yvon
%A Rodríguez, Jerónimo
%T A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations
%J Comptes Rendus. Mathématique
%D 2008
%P 1295-1300
%V 346
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.10.012/
%R 10.1016/j.crma.2008.10.012
%G en
%F CRMATH_2008__346_23-24_1295_0
Chen, Yanlai; Hesthaven, Jan S.; Maday, Yvon; Rodríguez, Jerónimo. A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations. Comptes Rendus. Mathématique, Tome 346 (2008) no. 23-24, pp. 1295-1300. doi : 10.1016/j.crma.2008.10.012. http://www.numdam.org/articles/10.1016/j.crma.2008.10.012/

[1] Barret, A.; Reddien, G. On the reduced basis method, Z. Angew. Math. Mech., Volume 75 (1995) no. 7, pp. 543-549

[2] Huynh, D.B.P.; Rozza, G.; Sen, S.; Patera, A.T. A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 473-478

[3] Maday, Y.; Patera, A.T.; Rovas, D.V. A blackbox reduced-basis output bound method for noncoercive linear problems (Cioranescu, D.; Lions, J.L., eds.), Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, vol. XIV, Elsevier Science B.V., 2002, pp. 533-569

[4] Nguyen, N.C.; Veroy, K.; Patera, A.T. Certified real-time solution of parametrized partial differential equations (Yip, S., ed.), Handbook of Materials Modeling, Springer, 2005, pp. 1523-1558

[5] Noor, A.K.; Peters, J.M. Reduced basis technique for nonlinear analysis of structures, AIAA J., Volume 18 (April 1980) no. 4, pp. 455-462

Cité par Sources :