Nous considérons l'équation d'Allen–Cahn :
We consider the Allen–Cahn equation
Publié le :
@article{CRMATH_2008__346_23-24_1261_0, author = {del Pino, Manuel and Kowalczyk, Micha{\l} and Wei, Juncheng}, title = {A counterexample to a conjecture by {De} {Giorgi} in large dimensions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1261--1266}, publisher = {Elsevier}, volume = {346}, number = {23-24}, year = {2008}, doi = {10.1016/j.crma.2008.10.010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.10.010/} }
TY - JOUR AU - del Pino, Manuel AU - Kowalczyk, Michał AU - Wei, Juncheng TI - A counterexample to a conjecture by De Giorgi in large dimensions JO - Comptes Rendus. Mathématique PY - 2008 SP - 1261 EP - 1266 VL - 346 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.10.010/ DO - 10.1016/j.crma.2008.10.010 LA - en ID - CRMATH_2008__346_23-24_1261_0 ER -
%0 Journal Article %A del Pino, Manuel %A Kowalczyk, Michał %A Wei, Juncheng %T A counterexample to a conjecture by De Giorgi in large dimensions %J Comptes Rendus. Mathématique %D 2008 %P 1261-1266 %V 346 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.10.010/ %R 10.1016/j.crma.2008.10.010 %G en %F CRMATH_2008__346_23-24_1261_0
del Pino, Manuel; Kowalczyk, Michał; Wei, Juncheng. A counterexample to a conjecture by De Giorgi in large dimensions. Comptes Rendus. Mathématique, Tome 346 (2008) no. 23-24, pp. 1261-1266. doi : 10.1016/j.crma.2008.10.010. http://www.numdam.org/articles/10.1016/j.crma.2008.10.010/
[1] On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., Volume 65 (2001) no. 1–3, pp. 9-33 (Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday)
[2] Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc., Volume 13 (2000), pp. 725-739
[3] The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math., Volume 53 (2000) no. 8, pp. 1007-1038
[4] One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., Volume 103 (2000), pp. 375-396
[5] Minimal cones and the Bernstein problem, Invent. Math., Volume 7 (1969), pp. 243-268
[6] X. Cabré, J. Terra, Saddle-shaped solutions of bistable diffusion equations in all of , Preprint, 2008
[7] Phase transitions: uniform regularity of the intermediate layers, J. Reine Angew. Math., Volume 593 (2006), pp. 209-235
[8] Convergence problems for functionals and operators, Rome, 1978, Pitagora, Bologna (1979), pp. 131-188
[9] Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., Volume 60 (2007) no. 1, pp. 113-146
[10] The Toda system and clustering interfaces in the Allen–Cahn equation, Arch. Rational Mech. Anal., Volume 190 (2008), pp. 141-187
[11] M. del Pino, M. Kowalczyk, F. Pacard, J. Wei, The Toda system and multiple-end solutions of autonomous planar elliptic problems, Preprint, 2007
[12] M. del Pino, M. Kowalczyk, J. Wei, On De Giorgi conjecture in dimension , Preprint, 2008
[13] Symmetry for solutions of semilinear elliptic equations in and related conjectures, Ricerche Mat., Volume 48 (1999) no. suppl., pp. 129-154
[14] On a conjecture of De Giorgi and some related problems, Math. Ann., Volume 311 (1998), pp. 481-491
[15] Towards a counter-example to a conjecture of De Giorgi in high dimensions, Ann. Mat. Pura Appl., Volume 183 (2004), pp. 439-467
[16] Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A, Volume 11 (1989), pp. 69-84
[17] Convergence to minimal surfaces problem and global solutions of , Rome, 1978, Pitagora, Bologna (1979), pp. 223-244
[18] The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., Volume 98 (1987) no. 2, pp. 123-142
[19] Un esempio di Γ-convergenza, Boll. Unione Mat. Ital. Sez. B, Volume 14 (1977), pp. 285-299
[20] From the constant mean curvature hypersurfaces to the gradient theory of phase transitions, J. Differential Geom., Volume 64 (2003) no. 3, pp. 356-423
[21] O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., in press
[22] Entire solutions of the minimal surface equation, J. Differential Geometry, Volume 30 (1989), pp. 643-688
[23] Minimal varieties in riemannian manifolds, Ann. of Math. (2), Volume 88 (1968), pp. 62-105
Cité par Sources :