Partial Differential Equations
A counterexample to a conjecture by De Giorgi in large dimensions
[Un contre-exemple à la conjecture de De Giorgi en grandes dimensions]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 23-24, pp. 1261-1266.

Nous considérons l'équation d'Allen–Cahn :

Δu+u(1u2)=0dans RN.
Une conjecture célèbre de E. De Giorgi (1978) affirme que si u est une solution bornée de ce problème telle que xNu>0, alors les ensembles de niveau {u=λ}, λR, sont des hyperplans au moins si N8. Nous contruisons une famille de solutions qui montre que cette conjecture n'est pas vraie pour N9.

We consider the Allen–Cahn equation

Δu+u(1u2)=0in RN.
A celebrated conjecture by E. De Giorgi (1978) states that if u is a bounded solution to this problem such that xNu>0, then the level sets {u=λ}, λR, must be hyperplanes at least if N8. We construct a family of solutions which shows that this statement does not hold true for N9.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.10.010
del Pino, Manuel 1 ; Kowalczyk, Michał 2, 3 ; Wei, Juncheng 4

1 Departamento de Ingeniería Matemática and CMM, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
2 Kent State University, Department of Mathematical Sciences, Kent, OH 44242, USA
3 Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
4 Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong
@article{CRMATH_2008__346_23-24_1261_0,
     author = {del Pino, Manuel and Kowalczyk, Micha{\l} and Wei, Juncheng},
     title = {A counterexample to a conjecture by {De} {Giorgi} in large dimensions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1261--1266},
     publisher = {Elsevier},
     volume = {346},
     number = {23-24},
     year = {2008},
     doi = {10.1016/j.crma.2008.10.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.10.010/}
}
TY  - JOUR
AU  - del Pino, Manuel
AU  - Kowalczyk, Michał
AU  - Wei, Juncheng
TI  - A counterexample to a conjecture by De Giorgi in large dimensions
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 1261
EP  - 1266
VL  - 346
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.10.010/
DO  - 10.1016/j.crma.2008.10.010
LA  - en
ID  - CRMATH_2008__346_23-24_1261_0
ER  - 
%0 Journal Article
%A del Pino, Manuel
%A Kowalczyk, Michał
%A Wei, Juncheng
%T A counterexample to a conjecture by De Giorgi in large dimensions
%J Comptes Rendus. Mathématique
%D 2008
%P 1261-1266
%V 346
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.10.010/
%R 10.1016/j.crma.2008.10.010
%G en
%F CRMATH_2008__346_23-24_1261_0
del Pino, Manuel; Kowalczyk, Michał; Wei, Juncheng. A counterexample to a conjecture by De Giorgi in large dimensions. Comptes Rendus. Mathématique, Tome 346 (2008) no. 23-24, pp. 1261-1266. doi : 10.1016/j.crma.2008.10.010. http://www.numdam.org/articles/10.1016/j.crma.2008.10.010/

[1] Alberti, G.; Ambrosio, L.; Cabré, X. On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., Volume 65 (2001) no. 1–3, pp. 9-33 (Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday)

[2] Ambrosio, L.; Cabré, X. Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi, J. Amer. Math. Soc., Volume 13 (2000), pp. 725-739

[3] Barlow, M.T.; Bass, R.F.; Gui, C. The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math., Volume 53 (2000) no. 8, pp. 1007-1038

[4] Berestycki, H.; Hamel, F.; Monneau, R. One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., Volume 103 (2000), pp. 375-396

[5] Bombieri, E.; De Giorgi, E.; Giusti, E. Minimal cones and the Bernstein problem, Invent. Math., Volume 7 (1969), pp. 243-268

[6] X. Cabré, J. Terra, Saddle-shaped solutions of bistable diffusion equations in all of R2m, Preprint, 2008

[7] Caffarelli, L.A.; Cordoba, A. Phase transitions: uniform regularity of the intermediate layers, J. Reine Angew. Math., Volume 593 (2006), pp. 209-235

[8] De Giorgi, E. Convergence problems for functionals and operators, Rome, 1978, Pitagora, Bologna (1979), pp. 131-188

[9] del Pino, M.; Kowalczyk, M.; Wei, J. Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., Volume 60 (2007) no. 1, pp. 113-146

[10] del Pino, M.; Kowalczyk, M.; Wei, J. The Toda system and clustering interfaces in the Allen–Cahn equation, Arch. Rational Mech. Anal., Volume 190 (2008), pp. 141-187

[11] M. del Pino, M. Kowalczyk, F. Pacard, J. Wei, The Toda system and multiple-end solutions of autonomous planar elliptic problems, Preprint, 2007

[12] M. del Pino, M. Kowalczyk, J. Wei, On De Giorgi conjecture in dimension N9, Preprint, 2008

[13] Farina, A. Symmetry for solutions of semilinear elliptic equations in RN and related conjectures, Ricerche Mat., Volume 48 (1999) no. suppl., pp. 129-154

[14] Ghoussoub, N.; Gui, C. On a conjecture of De Giorgi and some related problems, Math. Ann., Volume 311 (1998), pp. 481-491

[15] Jerison, D.; Monneau, R. Towards a counter-example to a conjecture of De Giorgi in high dimensions, Ann. Mat. Pura Appl., Volume 183 (2004), pp. 439-467

[16] Kohn, R.V.; Sternberg, P. Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A, Volume 11 (1989), pp. 69-84

[17] Modica, L. Convergence to minimal surfaces problem and global solutions of Δu=2(u3u), Rome, 1978, Pitagora, Bologna (1979), pp. 223-244

[18] Modica, L. The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., Volume 98 (1987) no. 2, pp. 123-142

[19] Modica, L.; Mortola, S. Un esempio di Γ-convergenza, Boll. Unione Mat. Ital. Sez. B, Volume 14 (1977), pp. 285-299

[20] Pacard, F.; Ritoré, M. From the constant mean curvature hypersurfaces to the gradient theory of phase transitions, J. Differential Geom., Volume 64 (2003) no. 3, pp. 356-423

[21] O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., in press

[22] Simon, L. Entire solutions of the minimal surface equation, J. Differential Geometry, Volume 30 (1989), pp. 643-688

[23] Simons, J. Minimal varieties in riemannian manifolds, Ann. of Math. (2), Volume 88 (1968), pp. 62-105

Cité par Sources :