Nous étudions les structures de Dirac multiplicatives sur les groupes de Lie. On montre que le feuilletage caractéristique d'une structure de Dirac multiplicative est donnée par les classes à gauche (respectivement à droite) d'un sous-groupe distingué et, quand ce sous-groupe est fermé, l'espace des feuilles est muni d'une structure de groupe de Lie–Poisson. Nous décrivons aussi la version infinitésimale des structures de Dirac multiplicatives sur les groupes de Lie.
We study multiplicative Dirac structures on Lie groups. We show that the characteristic foliation of a multiplicative Dirac structure is given by the cosets of a normal Lie subgroup and, whenever this subgroup is closed, the leaf space inherits the structure of a Poisson–Lie group. We also describe multiplicative Dirac structures on Lie groups infinitesimally.
Accepté le :
Publié le :
@article{CRMATH_2008__346_23-24_1279_0, author = {Ortiz, Cristi\'an}, title = {Multiplicative {Dirac} structures on {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1279--1282}, publisher = {Elsevier}, volume = {346}, number = {23-24}, year = {2008}, doi = {10.1016/j.crma.2008.10.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.10.003/} }
TY - JOUR AU - Ortiz, Cristián TI - Multiplicative Dirac structures on Lie groups JO - Comptes Rendus. Mathématique PY - 2008 SP - 1279 EP - 1282 VL - 346 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.10.003/ DO - 10.1016/j.crma.2008.10.003 LA - en ID - CRMATH_2008__346_23-24_1279_0 ER -
Ortiz, Cristián. Multiplicative Dirac structures on Lie groups. Comptes Rendus. Mathématique, Tome 346 (2008) no. 23-24, pp. 1279-1282. doi : 10.1016/j.crma.2008.10.003. http://www.numdam.org/articles/10.1016/j.crma.2008.10.003/
[1] Gauge equivalence of Dirac structures and symplectic groupoids, Ann. Inst. Fourier (Grenoble), Volume 53 (2003), pp. 309-337
[2] Dirac manifolds, Trans. Amer. Math. Soc., Volume 319 (1990), pp. 631-661
[3] Beyond Poisson structures, Lyon, 1986, Hermann, Paris (1988), pp. 39-49
[4] Hamiltonian structures on Lie groups, Lie bialgebras and geometric meaning of the classical Yang–Baxter equations, Soviet Math. Dokl., Volume 27 (1983) no. 1, pp. 68-71
[5] Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geometry, Volume 31 (1990), pp. 501-526
[6] General Theory of Lie Groupoids and Lie Algebroids, London Math. Soc. Lecture Notes Ser., vol. 213, 2005
[7] Dressing transformation and Poisson–Lie group actions, Publ. RIMS, Kyoto University, Volume 21 (1985), pp. 1237-1260
Cité par Sources :