[Corrélation entre deux problèmes quasilinéaires elliptiques avec terme de source relatif à la fonction ou à son gradient]
A l'aide d'un changement d'inconnue nous comparons deux problèmes elliptiques quasilinéaires avec conditions de Dirichlet dans un domaine borné Ω de . Le premier, de la forme , où β est positif, comporte un terme de gradient à croissance critique. Le second, de la forme où g est croissante, contient un terme de source d'ordre 0. La comparaison donne des résultats nouveaux d'existence, nonexistence et multiplicité pour les deux problèmes.
Thanks to a change of unknown we compare two elliptic quasilinear problems with Dirichlet data in a bounded domain of . The first one, of the form , where β is nonnegative, involves a gradient term with natural growth. The second one, of the form where g is nondecreasing, presents a source term of order 0. The correlation gives new results of existence, nonexistence and multiplicity for the two problems.
Publié le :
@article{CRMATH_2008__346_23-24_1251_0, author = {Hamid, Haydar Abdel and Bidaut-V\'eron, Marie Fran\c{c}oise}, title = {Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient}, journal = {Comptes Rendus. Math\'ematique}, pages = {1251--1256}, publisher = {Elsevier}, volume = {346}, number = {23-24}, year = {2008}, doi = {10.1016/j.crma.2008.10.002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.10.002/} }
TY - JOUR AU - Hamid, Haydar Abdel AU - Bidaut-Véron, Marie Françoise TI - Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient JO - Comptes Rendus. Mathématique PY - 2008 SP - 1251 EP - 1256 VL - 346 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.10.002/ DO - 10.1016/j.crma.2008.10.002 LA - en ID - CRMATH_2008__346_23-24_1251_0 ER -
%0 Journal Article %A Hamid, Haydar Abdel %A Bidaut-Véron, Marie Françoise %T Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient %J Comptes Rendus. Mathématique %D 2008 %P 1251-1256 %V 346 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.10.002/ %R 10.1016/j.crma.2008.10.002 %G en %F CRMATH_2008__346_23-24_1251_0
Hamid, Haydar Abdel; Bidaut-Véron, Marie Françoise. Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient. Comptes Rendus. Mathématique, Tome 346 (2008) no. 23-24, pp. 1251-1256. doi : 10.1016/j.crma.2008.10.002. http://www.numdam.org/articles/10.1016/j.crma.2008.10.002/
[1] Some remarks on elliptic problems with critical growth in the gradient, J. Differential Equations, Volume 222 (2006), pp. 21-62
[2] Blow-up for revisited, Adv. Differential Equations, Volume 1 (1996), pp. 73-90
[3] Semi-stable and extremal solutions of reaction equations involving the p-Laplacian, Comm. Pure Appl. Anal., Volume 6 (2007), pp. 43-67
[4] Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa, Volume 28 (1999), pp. 741-808
[5] On the solutions of quasilinear elliptic equations with a polynomial-type reaction term, Adv. Differential Equations, Volume 9 (2004), pp. 1201-1234
[6] Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal., Volume 42 (2000), pp. 1309-1326
[7] A general mountain path principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 6 (1989) no. 5, pp. 321-330
[8] On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem, Proc. Roy. Soc. Edinburgh Sect. A, Volume 129 (1999), pp. 787-809
[9] Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000), pp. 997-2002
[10] Nonlinear equations with natural growth terms and measure data, Electron. J. Differential Equations Conf., Volume 9 (2002), pp. 183-202
[11] Boundedness of the extremal solutions of some p-Laplacian problems, Nonlinear Anal., Volume 67 (2007), pp. 281-294
Cité par Sources :