Nous présentons une approche synthétique de la théorie des variétés invariantes, fondée sur la notion d'application génératrice.
We present a synthetic approach to invariant manifold theorems, based upon the notion of a generating map.
Accepté le :
Publié le :
@article{CRMATH_2008__346_21-22_1175_0, author = {Chaperon, Marc}, title = {Invariant manifold theory via generating maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {1175--1180}, publisher = {Elsevier}, volume = {346}, number = {21-22}, year = {2008}, doi = {10.1016/j.crma.2008.09.030}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.09.030/} }
TY - JOUR AU - Chaperon, Marc TI - Invariant manifold theory via generating maps JO - Comptes Rendus. Mathématique PY - 2008 SP - 1175 EP - 1180 VL - 346 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.09.030/ DO - 10.1016/j.crma.2008.09.030 LA - en ID - CRMATH_2008__346_21-22_1175_0 ER -
Chaperon, Marc. Invariant manifold theory via generating maps. Comptes Rendus. Mathématique, Tome 346 (2008) no. 21-22, pp. 1175-1180. doi : 10.1016/j.crma.2008.09.030. http://www.numdam.org/articles/10.1016/j.crma.2008.09.030/
[1] , Ergodic Theory Dynam. Systems (Fathi, A.; Yoccoz, J.-C., eds.) (Dynamical Systems: Michael Herman Memorial Volume), Volume 24, Cambridge University Press, 2004, pp. 1359-1394
[2] The Lipschitzian core of some invariant manifold theorems, Ergodic Theory Dynam. Systems, Volume 28 (2008), pp. 1419-1441
[3] M. Chaperon, S. López de Medrano, Invariant manifolds and semi-conjugacies, in preparation
[4] Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., Volume 21 (1971), pp. 193-225
[5] Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser, 1999
[6] Invariant Manifolds, Lecture Notes in Mathematics, vol. 583, Springer-Verlag, 1977
[7] A new proof of the stable manifold theorem, Z. Angew. Math. Phys., Volume 47 (1996) no. 4, pp. 497-513
Cité par Sources :