Nous donnons dans cette Note la preuve d'un résultat bien connu : un développement limité du profil isopérimétrique d'une variété riemannienne donne un développement limité du profil de Faber–Krahn de cette même variété.
The aim of this Note is to give a proof of a well-known fact: an asymptotic expansion of the isoperimetric profile of a Riemannian manifold for small volumes gives an asymptotic expansion of the Faber–Krahn profile for this same Riemannian manifold.
Accepté le :
Publié le :
@article{CRMATH_2008__346_21-22_1163_0, author = {Druet, Olivier}, title = {Asymptotic expansion of the {Faber{\textendash}Krahn} profile of a compact {Riemannian} manifold}, journal = {Comptes Rendus. Math\'ematique}, pages = {1163--1167}, publisher = {Elsevier}, volume = {346}, number = {21-22}, year = {2008}, doi = {10.1016/j.crma.2008.09.022}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.09.022/} }
TY - JOUR AU - Druet, Olivier TI - Asymptotic expansion of the Faber–Krahn profile of a compact Riemannian manifold JO - Comptes Rendus. Mathématique PY - 2008 SP - 1163 EP - 1167 VL - 346 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.09.022/ DO - 10.1016/j.crma.2008.09.022 LA - en ID - CRMATH_2008__346_21-22_1163_0 ER -
%0 Journal Article %A Druet, Olivier %T Asymptotic expansion of the Faber–Krahn profile of a compact Riemannian manifold %J Comptes Rendus. Mathématique %D 2008 %P 1163-1167 %V 346 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.09.022/ %R 10.1016/j.crma.2008.09.022 %G en %F CRMATH_2008__346_21-22_1163_0
Druet, Olivier. Asymptotic expansion of the Faber–Krahn profile of a compact Riemannian manifold. Comptes Rendus. Mathématique, Tome 346 (2008) no. 21-22, pp. 1163-1167. doi : 10.1016/j.crma.2008.09.022. http://www.numdam.org/articles/10.1016/j.crma.2008.09.022/
[1] Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics, vol. 1207, Springer-Verlag, 1986
[2] Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, vol. 115, Academic Press Inc., 1984
[3] Riemannian Geometry – A Modern Introduction, Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, 1993
[4] Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Amer. Math. Soc., Volume 130 (2002), pp. 2351-2361
[5] F. Pacard, P. Sicbaldi, Extremal domains for the first eigenvalue of the Laplace–Beltrami operator, Ann. Inst. Fourier, in press
Cité par Sources :