La représentation, dû à Petermichl, pour la transformée d'Hilbert comme une moyenne des translations dyadiques a des applications importantes. Ici, on montre que les integrals dans (une forme de) cette représentation convergent à la fois presque partout et fortement dans , , ce qui améliore le résultat antérieur que affirme la convergence faible dans .
Petermichl's representation for the Hilbert transform as an average of dyadic shifts has important applications. Here it is shown that the integrals involved in (a variant of) this representation converge both almost everywhere and strongly in , , which improves on the earlier result of weak convergence in .
Accepté le :
Publié le :
@article{CRMATH_2008__346_21-22_1133_0, author = {Hyt\"onen, Tuomas}, title = {On {Petermichl's} dyadic shift and the {Hilbert} transform}, journal = {Comptes Rendus. Math\'ematique}, pages = {1133--1136}, publisher = {Elsevier}, volume = {346}, number = {21-22}, year = {2008}, doi = {10.1016/j.crma.2008.09.021}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.09.021/} }
TY - JOUR AU - Hytönen, Tuomas TI - On Petermichl's dyadic shift and the Hilbert transform JO - Comptes Rendus. Mathématique PY - 2008 SP - 1133 EP - 1136 VL - 346 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.09.021/ DO - 10.1016/j.crma.2008.09.021 LA - en ID - CRMATH_2008__346_21-22_1133_0 ER -
%0 Journal Article %A Hytönen, Tuomas %T On Petermichl's dyadic shift and the Hilbert transform %J Comptes Rendus. Mathématique %D 2008 %P 1133-1136 %V 346 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.09.021/ %R 10.1016/j.crma.2008.09.021 %G en %F CRMATH_2008__346_21-22_1133_0
Hytönen, Tuomas. On Petermichl's dyadic shift and the Hilbert transform. Comptes Rendus. Mathématique, Tome 346 (2008) no. 21-22, pp. 1133-1136. doi : 10.1016/j.crma.2008.09.021. http://www.numdam.org/articles/10.1016/j.crma.2008.09.021/
[1] Singular integral operators: a martingale approach, Strobl, 1989 (London Math. Soc. Lecture Note Ser.), Volume vol. 158, Cambridge Univ. Press, Cambridge (1990), pp. 95-110
[2] The Tb-theorem on non-homogeneous spaces, Acta Math., Volume 190 (2003) no. 2, pp. 151-239
[3] Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000) no. 6, pp. 455-460
[4] The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical characteristic, Amer. J. Math., Volume 129 (2007) no. 5, pp. 1355-1375
[5] A version of Burkholder's theorem for operator-weighted spaces, Proc. Amer. Math. Soc., Volume 131 (2003) no. 11, pp. 3457-3461 (electronic)
Cité par Sources :