La représentation, dû à Petermichl, pour la transformée d'Hilbert comme une moyenne des translations dyadiques a des applications importantes. Ici, on montre que les integrals dans (une forme de) cette représentation convergent à la fois presque partout et fortement dans
Petermichl's representation for the Hilbert transform as an average of dyadic shifts has important applications. Here it is shown that the integrals involved in (a variant of) this representation converge both almost everywhere and strongly in
Accepté le :
Publié le :
@article{CRMATH_2008__346_21-22_1133_0, author = {Hyt\"onen, Tuomas}, title = {On {Petermichl's} dyadic shift and the {Hilbert} transform}, journal = {Comptes Rendus. Math\'ematique}, pages = {1133--1136}, publisher = {Elsevier}, volume = {346}, number = {21-22}, year = {2008}, doi = {10.1016/j.crma.2008.09.021}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2008.09.021/} }
TY - JOUR AU - Hytönen, Tuomas TI - On Petermichl's dyadic shift and the Hilbert transform JO - Comptes Rendus. Mathématique PY - 2008 SP - 1133 EP - 1136 VL - 346 IS - 21-22 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.09.021/ DO - 10.1016/j.crma.2008.09.021 LA - en ID - CRMATH_2008__346_21-22_1133_0 ER -
%0 Journal Article %A Hytönen, Tuomas %T On Petermichl's dyadic shift and the Hilbert transform %J Comptes Rendus. Mathématique %D 2008 %P 1133-1136 %V 346 %N 21-22 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2008.09.021/ %R 10.1016/j.crma.2008.09.021 %G en %F CRMATH_2008__346_21-22_1133_0
Hytönen, Tuomas. On Petermichl's dyadic shift and the Hilbert transform. Comptes Rendus. Mathématique, Tome 346 (2008) no. 21-22, pp. 1133-1136. doi : 10.1016/j.crma.2008.09.021. https://www.numdam.org/articles/10.1016/j.crma.2008.09.021/
[1] Singular integral operators: a martingale approach, Strobl, 1989 (London Math. Soc. Lecture Note Ser.), Volume vol. 158, Cambridge Univ. Press, Cambridge (1990), pp. 95-110
[2] The Tb-theorem on non-homogeneous spaces, Acta Math., Volume 190 (2003) no. 2, pp. 151-239
[3] Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000) no. 6, pp. 455-460
[4] The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical
[5] A version of Burkholder's theorem for operator-weighted spaces, Proc. Amer. Math. Soc., Volume 131 (2003) no. 11, pp. 3457-3461 (electronic)
- On the sense of convergence in the dyadic representation theorem, Acta Mathematica Sinica. English Series, Volume 41 (2025) no. 1, pp. 472-496 | DOI:10.1007/s10114-025-3698-0 | Zbl:7980891
- A two weight local
theorem for the Hilbert transform, Revista Matemática Iberoamericana, Volume 37 (2021) no. 2, pp. 415-641 | DOI:10.4171/rmi/1209 | Zbl:1465.42021 - The two weight
theorem for fractional Riesz transforms when one measure is supported on a curve, Journal d'Analyse Mathématique, Volume 142 (2020) no. 2, pp. 453-520 | DOI:10.1007/s11854-020-0141-4 | Zbl:1461.42010 - Recent developments in two weight testing theory, Real Analysis Exchange, Volume 45 (2020) no. 2, pp. 235-264 | DOI:10.14321/realanalexch.45.2.0235 | Zbl:1448.42024
- Dyadic harmonic analysis and weighted inequalities: the sparse revolution, New trends in applied harmonic analysis. Volume 2. Harmonic analysis, geometric measure theory, and applications. Collected papers based on courses given at the 2017 CIMPA school, Buenos Aires, Argentina, July 31 – August 11, 2017, Cham: Birkhäuser, 2019, pp. 159-239 | DOI:10.1007/978-3-030-32353-0_7 | Zbl:1473.42019
- A revisit on commutators of linear and bilinear fractional integral operator, Tohoku Mathematical Journal, Volume 71 (2019) no. 2 | DOI:10.2748/tmj/1561082600
- Lower bounds for the dyadic Hilbert transform, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 27 (2018) no. 1, pp. 265-284 | DOI:10.5802/afst.1569 | Zbl:1400.42013
- A weighted maximal inequality for differentially subordinate martingales, Proceedings of the American Mathematical Society, Volume 146 (2018) no. 5, pp. 2263-2275 | DOI:10.1090/proc/13912 | Zbl:1390.60159
- The two weight inequality for the Hilbert transform: a primer, Harmonic analysis, partial differential equations, Banach spaces, and operator theory. Volume 2. Celebrating Cora Sadosky's life, Cham: Springer, 2017, pp. 11-84 | DOI:10.1007/978-3-319-51593-9_3 | Zbl:1395.42034
- A two weight fractional singular integral theorem with side conditions, energy and
-energy dispersed, Harmonic analysis, partial differential equations, Banach spaces, and operator theory. Volume 2. Celebrating Cora Sadosky's life, Cham: Springer, 2017, pp. 305-372 | DOI:10.1007/978-3-319-51593-9_13 | Zbl:1387.42013 - Commutators with fractional integral operators, Studia Mathematica, Volume 233 (2016) no. 3, pp. 279-291 | DOI:10.4064/sm8419-4-2016 | Zbl:1355.42009
- Logarithmic mean oscillation on the polydisc, multi-parameter paraproducts and iterated commutators, The Journal of Fourier Analysis and Applications, Volume 20 (2014) no. 3, pp. 500-523 | DOI:10.1007/s00041-014-9325-6 | Zbl:1311.42057
- Weighted Inequalities and Dyadic Harmonic Analysis, Excursions in Harmonic Analysis, Volume 2 (2013), p. 281 | DOI:10.1007/978-0-8176-8379-5_15
- Local
theorems and Hardy inequalities, The Journal of Geometric Analysis, Volume 23 (2013) no. 1, pp. 303-374 | DOI:10.1007/s12220-011-9249-1 | Zbl:1266.42028 - Logarithmic mean oscillation on the polydisc, endpoint results for multi-parameter paraproducts, and commutators on BMO, Journal d'Analyse Mathématique, Volume 117 (2012), pp. 1-27 | DOI:10.1007/s11854-012-0012-8 | Zbl:1270.42027
- A two weight inequality for the Hilbert transform assuming an energy hypothesis, Journal of Functional Analysis, Volume 263 (2012) no. 2, pp. 305-363 | DOI:10.1016/j.jfa.2012.04.019 | Zbl:1252.42018
- Recovering singular integrals from Haar shifts, Proceedings of the American Mathematical Society, Volume 138 (2010) no. 12, pp. 4303-4309 | DOI:10.1090/s0002-9939-2010-10426-4 | Zbl:1207.42013
Cité par 17 documents. Sources : Crossref, zbMATH