Nous démontrons une borne inférieure sur la constante de Seshadri sur un surface K3 telle que . En particulier, nous obténons que si pour un nombre entier α.
We prove a lower bound on the Seshadri constant on a K3 surface S with . In particular, we obtain that if for an integer α.
Accepté le :
Publié le :
@article{CRMATH_2008__346_19-20_1079_0, author = {Knutsen, Andreas Leopold}, title = {A {Note} on {Seshadri} constants on general {\protect\emph{K}3} surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1079--1081}, publisher = {Elsevier}, volume = {346}, number = {19-20}, year = {2008}, doi = {10.1016/j.crma.2008.09.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.09.008/} }
TY - JOUR AU - Knutsen, Andreas Leopold TI - A Note on Seshadri constants on general K3 surfaces JO - Comptes Rendus. Mathématique PY - 2008 SP - 1079 EP - 1081 VL - 346 IS - 19-20 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.09.008/ DO - 10.1016/j.crma.2008.09.008 LA - en ID - CRMATH_2008__346_19-20_1079_0 ER -
%0 Journal Article %A Knutsen, Andreas Leopold %T A Note on Seshadri constants on general K3 surfaces %J Comptes Rendus. Mathématique %D 2008 %P 1079-1081 %V 346 %N 19-20 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.09.008/ %R 10.1016/j.crma.2008.09.008 %G en %F CRMATH_2008__346_19-20_1079_0
Knutsen, Andreas Leopold. A Note on Seshadri constants on general K3 surfaces. Comptes Rendus. Mathématique, Tome 346 (2008) no. 19-20, pp. 1079-1081. doi : 10.1016/j.crma.2008.09.008. http://www.numdam.org/articles/10.1016/j.crma.2008.09.008/
[1] Seshadri constants on algebraic surfaces, Math. Ann., Volume 313 (1999), pp. 547-583
[2] Seshadri constants of quartic surfaces, Math. Ann., Volume 309 (1999), pp. 475-481
[3] Generation of jets on K3 surfaces, J. Pure Appl. Algebra, Volume 146 (2000), pp. 17-27
[4] A simple proof that rational curves on K3 are nodal, Math. Ann., Volume 324 (2002), pp. 71-104
[5] Rational curves on K3 surfaces, J. Algebraic Geom., Volume 8 (1999), pp. 245-278
[6] Singular Hermitian metrics on positive line bundles, Bayreuth, 1990 (Lecture Notes in Math.), Volume vol. 1507, Springer, Berlin (1992), pp. 87-104
[7] On the structure of compact complex analytic surfaces. I, Amer. J. Math., Volume 86 (1964), pp. 751-798
[8] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 48, Springer-Verlag, Berlin, 2004
[9] Seshadri constants in a family of surfaces, Math. Ann., Volume 323 (2002), pp. 625-631
[10] Remarks on Seshadri constants, Math. Z., Volume 227 (1998), pp. 505-510
[11] On positivity of line bundles on Enriques surfaces, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 4963-4972
Cité par Sources :
⁎ Research supported by a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme and carried out at Università di Roma Tre, Rome, Italy.