Mathematical Problems in Mechanics
Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors
[Reconstruction explicite d'un champ de déplacements le long d'une surface au moyen de ses tenseurs linéarisés de changement de métrique et de courbure]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 19-20, pp. 1113-1117.

Soit ω un ouvert simplement connexe de R2 et soit θ:ωR2 une immersion régulière. Si deux champs (γαβ) et (ραβ) de matrices symétriques d'ordre deux satisfont des conditions de compatibilité appropriées dans ω, alors (γαβ) et (ραβ) sont les champs de tenseurs linéarisés de changement de métrique et de courbure associés à un champ η de déplacements de la surface θ(ω).

On montre ici que, si les champs (γαβ) et (ραβ) sont réguliers, le vecteur déplacement η(y) en tout point θ(y),yω, de la surface θ(ω) peut être calculé explicitement au moyen d'une “intégrale de Cesàro–Volterra” le long d'un chemin dans ω d'extrémité y, et dont l'intégrande est une fonction explicite des fonctions γαβ et ραβ et de leurs dérivées covariantes.

Let ω be a simply-connected open subset in R2 and let θ:ωR3 be a smooth immersion. If two symmetric matrix fields (γαβ) and (ραβ) of order two satisfy appropriate compatibility relations in ω, then (γαβ) and (ραβ) are the linearized change of metric and change of curvature tensor fields corresponding to a displacement vector field η of the surface θ(ω).

We show here that, when the fields (γαβ) and (ραβ) are smooth, the displacement vector η(y) at any point θ(y),yω, of the surface θ(ω) can be explicitly computed by means of a “Cesàro–Volterra path integral formula on a surface”, i.e., a path integral inside ω with endpoint y, and whose integrand is an explicit function of the functions γαβ and ραβ and their covariant derivatives.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.09.001
Ciarlet, Philippe G. 1 ; Gratie, Liliana 1 ; Serpilli, Michele 2

1 Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
2 Laboratoire de mécanique et génie civil, Université de Montpellier II, 34090 Montpellier, France
@article{CRMATH_2008__346_19-20_1113_0,
     author = {Ciarlet, Philippe G. and Gratie, Liliana and Serpilli, Michele},
     title = {Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1113--1117},
     publisher = {Elsevier},
     volume = {346},
     number = {19-20},
     year = {2008},
     doi = {10.1016/j.crma.2008.09.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.09.001/}
}
TY  - JOUR
AU  - Ciarlet, Philippe G.
AU  - Gratie, Liliana
AU  - Serpilli, Michele
TI  - Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 1113
EP  - 1117
VL  - 346
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.09.001/
DO  - 10.1016/j.crma.2008.09.001
LA  - en
ID  - CRMATH_2008__346_19-20_1113_0
ER  - 
%0 Journal Article
%A Ciarlet, Philippe G.
%A Gratie, Liliana
%A Serpilli, Michele
%T Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors
%J Comptes Rendus. Mathématique
%D 2008
%P 1113-1117
%V 346
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.09.001/
%R 10.1016/j.crma.2008.09.001
%G en
%F CRMATH_2008__346_19-20_1113_0
Ciarlet, Philippe G.; Gratie, Liliana; Serpilli, Michele. Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors. Comptes Rendus. Mathématique, Tome 346 (2008) no. 19-20, pp. 1113-1117. doi : 10.1016/j.crma.2008.09.001. http://www.numdam.org/articles/10.1016/j.crma.2008.09.001/

[1] Cesàro, E. Sulle formole del Volterra, fondamentali nella teoria delle distorsioni elastiche, Rend. Napoli, Volume 12 (1906), pp. 311-321

[2] Ciarlet, P.G. An Introduction to Differential Geometry with Applications to Elasticity, Springer-Verlag, 2005

[3] Ciarlet, P.G.; Gratie, L.; Mardare, C.; Shen, M. Saint Venant compatibility conditions on a surface – application to intrinsic shell theory, Math. Models Methods Appl. Sci., Volume 18 (2008), pp. 165-194

[4] P.G. Ciarlet, L. Gratie, M. Serpilli, Cesàro–Volterra path integral formula on a surface, Math. Models Methods Appl. Sci. (2009), in press

[5] P.G. Ciarlet, L. Gratie, M. Serpilli, On the Cesàro–Volterra path integral formula on a surface and its relation to the Saint Venant compatibility conditions, in preparation

[6] Ciarlet, P.G.; Mardare, C.; Shen, M. Saint Venant compatibility equations in curvilinear coordinates, Anal. Appl., Volume 5 (2007), pp. 231-251

[7] Gurtin, M.E. The linear theory of elasticity (Flügge, S.; Truesdell, C., eds.), Handbuch der Physik, vol. VIa/2, Springer-Verlag, 1972, pp. 1-295

[8] Volterra, V. Sur l'équilibre des corps élastiques multiplement connexes, Ann. Ecole Normale, Volume 24 (1907), pp. 401-517

Cité par Sources :