[Reconstruction explicite d'un champ de déplacements le long d'une surface au moyen de ses tenseurs linéarisés de changement de métrique et de courbure]
Soit ω un ouvert simplement connexe de et soit une immersion régulière. Si deux champs et de matrices symétriques d'ordre deux satisfont des conditions de compatibilité appropriées dans ω, alors et sont les champs de tenseurs linéarisés de changement de métrique et de courbure associés à un champ η de déplacements de la surface .
On montre ici que, si les champs et sont réguliers, le vecteur déplacement en tout point , de la surface peut être calculé explicitement au moyen d'une “intégrale de Cesàro–Volterra” le long d'un chemin dans ω d'extrémité y, et dont l'intégrande est une fonction explicite des fonctions et et de leurs dérivées covariantes.
Let ω be a simply-connected open subset in and let be a smooth immersion. If two symmetric matrix fields and of order two satisfy appropriate compatibility relations in ω, then and are the linearized change of metric and change of curvature tensor fields corresponding to a displacement vector field η of the surface .
We show here that, when the fields and are smooth, the displacement vector at any point , of the surface can be explicitly computed by means of a “Cesàro–Volterra path integral formula on a surface”, i.e., a path integral inside ω with endpoint y, and whose integrand is an explicit function of the functions and and their covariant derivatives.
Publié le :
@article{CRMATH_2008__346_19-20_1113_0, author = {Ciarlet, Philippe G. and Gratie, Liliana and Serpilli, Michele}, title = {Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors}, journal = {Comptes Rendus. Math\'ematique}, pages = {1113--1117}, publisher = {Elsevier}, volume = {346}, number = {19-20}, year = {2008}, doi = {10.1016/j.crma.2008.09.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.09.001/} }
TY - JOUR AU - Ciarlet, Philippe G. AU - Gratie, Liliana AU - Serpilli, Michele TI - Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors JO - Comptes Rendus. Mathématique PY - 2008 SP - 1113 EP - 1117 VL - 346 IS - 19-20 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.09.001/ DO - 10.1016/j.crma.2008.09.001 LA - en ID - CRMATH_2008__346_19-20_1113_0 ER -
%0 Journal Article %A Ciarlet, Philippe G. %A Gratie, Liliana %A Serpilli, Michele %T Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors %J Comptes Rendus. Mathématique %D 2008 %P 1113-1117 %V 346 %N 19-20 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.09.001/ %R 10.1016/j.crma.2008.09.001 %G en %F CRMATH_2008__346_19-20_1113_0
Ciarlet, Philippe G.; Gratie, Liliana; Serpilli, Michele. Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors. Comptes Rendus. Mathématique, Tome 346 (2008) no. 19-20, pp. 1113-1117. doi : 10.1016/j.crma.2008.09.001. http://www.numdam.org/articles/10.1016/j.crma.2008.09.001/
[1] Sulle formole del Volterra, fondamentali nella teoria delle distorsioni elastiche, Rend. Napoli, Volume 12 (1906), pp. 311-321
[2] An Introduction to Differential Geometry with Applications to Elasticity, Springer-Verlag, 2005
[3] Saint Venant compatibility conditions on a surface – application to intrinsic shell theory, Math. Models Methods Appl. Sci., Volume 18 (2008), pp. 165-194
[4] P.G. Ciarlet, L. Gratie, M. Serpilli, Cesàro–Volterra path integral formula on a surface, Math. Models Methods Appl. Sci. (2009), in press
[5] P.G. Ciarlet, L. Gratie, M. Serpilli, On the Cesàro–Volterra path integral formula on a surface and its relation to the Saint Venant compatibility conditions, in preparation
[6] Saint Venant compatibility equations in curvilinear coordinates, Anal. Appl., Volume 5 (2007), pp. 231-251
[7] The linear theory of elasticity (Flügge, S.; Truesdell, C., eds.), Handbuch der Physik, vol. VIa/2, Springer-Verlag, 1972, pp. 1-295
[8] Sur l'équilibre des corps élastiques multiplement connexes, Ann. Ecole Normale, Volume 24 (1907), pp. 401-517
Cité par Sources :