[Reconstruction explicite d'un champ de déplacements le long d'une surface au moyen de ses tenseurs linéarisés de changement de métrique et de courbure]
Soit ω un ouvert simplement connexe de
On montre ici que, si les champs
Let ω be a simply-connected open subset in
We show here that, when the fields
Publié le :
@article{CRMATH_2008__346_19-20_1113_0, author = {Ciarlet, Philippe G. and Gratie, Liliana and Serpilli, Michele}, title = {Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors}, journal = {Comptes Rendus. Math\'ematique}, pages = {1113--1117}, publisher = {Elsevier}, volume = {346}, number = {19-20}, year = {2008}, doi = {10.1016/j.crma.2008.09.001}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2008.09.001/} }
TY - JOUR AU - Ciarlet, Philippe G. AU - Gratie, Liliana AU - Serpilli, Michele TI - Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors JO - Comptes Rendus. Mathématique PY - 2008 SP - 1113 EP - 1117 VL - 346 IS - 19-20 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.09.001/ DO - 10.1016/j.crma.2008.09.001 LA - en ID - CRMATH_2008__346_19-20_1113_0 ER -
%0 Journal Article %A Ciarlet, Philippe G. %A Gratie, Liliana %A Serpilli, Michele %T Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors %J Comptes Rendus. Mathématique %D 2008 %P 1113-1117 %V 346 %N 19-20 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2008.09.001/ %R 10.1016/j.crma.2008.09.001 %G en %F CRMATH_2008__346_19-20_1113_0
Ciarlet, Philippe G.; Gratie, Liliana; Serpilli, Michele. Explicit reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors. Comptes Rendus. Mathématique, Tome 346 (2008) no. 19-20, pp. 1113-1117. doi : 10.1016/j.crma.2008.09.001. https://www.numdam.org/articles/10.1016/j.crma.2008.09.001/
[1] Sulle formole del Volterra, fondamentali nella teoria delle distorsioni elastiche, Rend. Napoli, Volume 12 (1906), pp. 311-321
[2] An Introduction to Differential Geometry with Applications to Elasticity, Springer-Verlag, 2005
[3] Saint Venant compatibility conditions on a surface – application to intrinsic shell theory, Math. Models Methods Appl. Sci., Volume 18 (2008), pp. 165-194
[4] P.G. Ciarlet, L. Gratie, M. Serpilli, Cesàro–Volterra path integral formula on a surface, Math. Models Methods Appl. Sci. (2009), in press
[5] P.G. Ciarlet, L. Gratie, M. Serpilli, On the Cesàro–Volterra path integral formula on a surface and its relation to the Saint Venant compatibility conditions, in preparation
[6] Saint Venant compatibility equations in curvilinear coordinates, Anal. Appl., Volume 5 (2007), pp. 231-251
[7] The linear theory of elasticity (Flügge, S.; Truesdell, C., eds.), Handbuch der Physik, vol. VIa/2, Springer-Verlag, 1972, pp. 1-295
[8] Sur l'équilibre des corps élastiques multiplement connexes, Ann. Ecole Normale, Volume 24 (1907), pp. 401-517
Cité par Sources :