Partial Differential Equations
Pulsating traveling fronts in space–time periodic media
[Fronts pulsatoires en milieu périodique en temps et en espace]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 17-18, pp. 951-956.

Cette Note traite de l'existence de fronts pulsatoires pour une équation de réaction–diffusion en milieu périodique en temps et en espace. Sous certaines hypothèses, il existe deux vitesses c et c telles qu'il existe des fronts pulsatoires de vitesse c pour tout cc et qu'il n'existe pas de tel front de vitesse c<c. Dans le cas d'un terme de réaction de type KPP, nous caractérisons cette vitesse à l'aide d'une famille de valeurs propres associée à l'équation. Enfin, nous étudions la dépendance entre cette vitesse minimale et les coefficients de l'équation.

This Note deals with the existence of pulsating traveling fronts for some reaction–diffusion equation in space–time periodic media. Under some hypotheses, there exist two speeds c and c such that there exist some pulsating traveling fronts of speed c for all cc and that there exists no such front of speed c<c. In the case of a KPP-type reaction term, we characterize this speed with the help of a family of eigenvalues associated with the equation. Lastly, we study the dependence between this minimal speed and the coefficients of the equation.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.07.030
Nadin, Grégoire 1, 2

1 Département de mathématiques et applications, École normale supérieure, 45, rue d'Ulm, 75230 Paris cedex 05, France
2 UPMC université Paris 6, Laboratoire Jacques-Louis Lions, 75252 Paris cedex 05, France
@article{CRMATH_2008__346_17-18_951_0,
     author = {Nadin, Gr\'egoire},
     title = {Pulsating traveling fronts in space{\textendash}time periodic media},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {951--956},
     publisher = {Elsevier},
     volume = {346},
     number = {17-18},
     year = {2008},
     doi = {10.1016/j.crma.2008.07.030},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.07.030/}
}
TY  - JOUR
AU  - Nadin, Grégoire
TI  - Pulsating traveling fronts in space–time periodic media
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 951
EP  - 956
VL  - 346
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.07.030/
DO  - 10.1016/j.crma.2008.07.030
LA  - en
ID  - CRMATH_2008__346_17-18_951_0
ER  - 
%0 Journal Article
%A Nadin, Grégoire
%T Pulsating traveling fronts in space–time periodic media
%J Comptes Rendus. Mathématique
%D 2008
%P 951-956
%V 346
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.07.030/
%R 10.1016/j.crma.2008.07.030
%G en
%F CRMATH_2008__346_17-18_951_0
Nadin, Grégoire. Pulsating traveling fronts in space–time periodic media. Comptes Rendus. Mathématique, Tome 346 (2008) no. 17-18, pp. 951-956. doi : 10.1016/j.crma.2008.07.030. http://www.numdam.org/articles/10.1016/j.crma.2008.07.030/

[1] Aronson, D.G.; Weinberger, H.F. Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33-76

[2] Berestycki, H.; Hamel, F. Front propagation in periodic excitable media, Comm. Pure Appl. Math., Volume 55 (2002), pp. 949-1032

[3] Berestycki, H.; Hamel, F.; Kiselev, A.; Ryzhik, L. Quenching and propagation in KPP reaction–diffusion equations with a heat loss, Arch. Ration. Mech. Anal., Volume 178 (2005), pp. 57-80

[4] Berestycki, H.; Hamel, F.; Roques, L. Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating traveling fronts, J. Math. Pures Appl., Volume 85 (2005), pp. 1101-1146

[5] G. Frejacques, Traveling waves in infinite cylinders with time-periodic coefficients, PhD thesis

[6] Fisher, R.A. The advance of advantageous genes, Ann. Eugenics, Volume 7 (1937), pp. 335-369

[7] Kolmogorov, N.; Petrovsky, I.G.; Piskunov, N.S. Etude de l'equation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d'Etat à Moscou (Bjul. Moskowskogo Gos. Univ.), Série internationale A, Volume 1 (1937), pp. 1-26

[8] G. Nadin, Existence and uniqueness of the solution of a space–time periodic reaction–diffusion equation, preprint

[9] G. Nadin, The principal eigenvalue of a space–time periodic parabolic operator, Ann. Mat. Pura Appl., in press

[10] G. Nadin, Traveling fronts in space–time periodic media, preprint

[11] Nolen, J.; Rudd, M.; Xin, J. Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dynamics of PDE, Volume 2 (2005) no. 1, pp. 1-24

[12] Shigesada, N.; Kawasaki, K. Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, 1997

[13] Weinberger, H. On spreading speed and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., Volume 45 (2002), pp. 511-548

Cité par Sources :