Cette Note traite de l'existence de fronts pulsatoires pour une équation de réaction–diffusion en milieu périodique en temps et en espace. Sous certaines hypothèses, il existe deux vitesses
This Note deals with the existence of pulsating traveling fronts for some reaction–diffusion equation in space–time periodic media. Under some hypotheses, there exist two speeds
Publié le :
@article{CRMATH_2008__346_17-18_951_0, author = {Nadin, Gr\'egoire}, title = {Pulsating traveling fronts in space{\textendash}time periodic media}, journal = {Comptes Rendus. Math\'ematique}, pages = {951--956}, publisher = {Elsevier}, volume = {346}, number = {17-18}, year = {2008}, doi = {10.1016/j.crma.2008.07.030}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2008.07.030/} }
TY - JOUR AU - Nadin, Grégoire TI - Pulsating traveling fronts in space–time periodic media JO - Comptes Rendus. Mathématique PY - 2008 SP - 951 EP - 956 VL - 346 IS - 17-18 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.07.030/ DO - 10.1016/j.crma.2008.07.030 LA - en ID - CRMATH_2008__346_17-18_951_0 ER -
%0 Journal Article %A Nadin, Grégoire %T Pulsating traveling fronts in space–time periodic media %J Comptes Rendus. Mathématique %D 2008 %P 951-956 %V 346 %N 17-18 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2008.07.030/ %R 10.1016/j.crma.2008.07.030 %G en %F CRMATH_2008__346_17-18_951_0
Nadin, Grégoire. Pulsating traveling fronts in space–time periodic media. Comptes Rendus. Mathématique, Tome 346 (2008) no. 17-18, pp. 951-956. doi : 10.1016/j.crma.2008.07.030. https://www.numdam.org/articles/10.1016/j.crma.2008.07.030/
[1] Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33-76
[2] Front propagation in periodic excitable media, Comm. Pure Appl. Math., Volume 55 (2002), pp. 949-1032
[3] Quenching and propagation in KPP reaction–diffusion equations with a heat loss, Arch. Ration. Mech. Anal., Volume 178 (2005), pp. 57-80
[4] Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating traveling fronts, J. Math. Pures Appl., Volume 85 (2005), pp. 1101-1146
[5] G. Frejacques, Traveling waves in infinite cylinders with time-periodic coefficients, PhD thesis
[6] The advance of advantageous genes, Ann. Eugenics, Volume 7 (1937), pp. 335-369
[7] Etude de l'equation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d'Etat à Moscou (Bjul. Moskowskogo Gos. Univ.), Série internationale A, Volume 1 (1937), pp. 1-26
[8] G. Nadin, Existence and uniqueness of the solution of a space–time periodic reaction–diffusion equation, preprint
[9] G. Nadin, The principal eigenvalue of a space–time periodic parabolic operator, Ann. Mat. Pura Appl., in press
[10] G. Nadin, Traveling fronts in space–time periodic media, preprint
[11] Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dynamics of PDE, Volume 2 (2005) no. 1, pp. 1-24
[12] Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, 1997
[13] On spreading speed and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., Volume 45 (2002), pp. 511-548
Cité par Sources :