On étudie des inégalités à poids pour des transformées de Fourier, en particulier on formule une conjecture de Boas traduisant une intégrabilité pour des fonctions dans le cas où le poids est une puissance lorsque l'une des fonctions est monotone et . Nous donnons des versions unidimensionnelles et multidimensionnelles (dans le cas de fonctions radiales) pour ou et pour une classe définie de fonctions généralement monotones.
Weighted Fourier inequalities are studied. We prove Boas' conjecture on integrability with power weights of the Fourier transform. One-dimensional as well as multidimensional versions (for radial functions) are obtained for general monotone functions.
Accepté le :
Publié le :
@article{CRMATH_2008__346_21-22_1137_0, author = {Liflyand, Elijah and Tikhonov, Sergey}, title = {Extended solution of {Boas'} conjecture on {Fourier} transforms}, journal = {Comptes Rendus. Math\'ematique}, pages = {1137--1142}, publisher = {Elsevier}, volume = {346}, number = {21-22}, year = {2008}, doi = {10.1016/j.crma.2008.07.029}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.07.029/} }
TY - JOUR AU - Liflyand, Elijah AU - Tikhonov, Sergey TI - Extended solution of Boas' conjecture on Fourier transforms JO - Comptes Rendus. Mathématique PY - 2008 SP - 1137 EP - 1142 VL - 346 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.07.029/ DO - 10.1016/j.crma.2008.07.029 LA - en ID - CRMATH_2008__346_21-22_1137_0 ER -
%0 Journal Article %A Liflyand, Elijah %A Tikhonov, Sergey %T Extended solution of Boas' conjecture on Fourier transforms %J Comptes Rendus. Mathématique %D 2008 %P 1137-1142 %V 346 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.07.029/ %R 10.1016/j.crma.2008.07.029 %G en %F CRMATH_2008__346_21-22_1137_0
Liflyand, Elijah; Tikhonov, Sergey. Extended solution of Boas' conjecture on Fourier transforms. Comptes Rendus. Mathématique, Tome 346 (2008) no. 21-22, pp. 1137-1142. doi : 10.1016/j.crma.2008.07.029. http://www.numdam.org/articles/10.1016/j.crma.2008.07.029/
[1] Integrability theorems for Fourier series, Duke Math. J., Volume 33 (1966), pp. 223-228
[2] Weighted Fourier inequalities: new proofs and generalizations, J. Fourier Anal. Appl., Volume 9 (2003), pp. 1-37
[3] The integrability class of the sine transform of a monotonic function, Studia Math., Volume XLIV (1972), pp. 365-369
[4] Hardy inequalities with mixed norms, Canad. Math. Bull., Volume 21 (1978), pp. 405-408
[5] Convergence of trigonometric series with general monotone coefficients, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 345 (2007) no. 3, pp. 123-126
[6] E. Liflyand, S. Tikhonov, The Fourier transforms of general monotone functions, in: Analysis and Mathematical Physics, Birkhäuser, 2009
[7] Some weighted norm inequalities for the Fourier transform of functions with vanishing moments, Trans. Amer. Math. Soc., Volume 300 (1987), pp. 521-533
[8] Integrability conditions for the Fourier transform, J. Math. Anal. Appl., Volume 54 (1976), pp. 151-156
[9] Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, NY, 1993
[10] Trigonometric series with general monotone coefficients, J. Math. Anal. Appl., Volume 326 (2007), pp. 721-735
[11] Best approximation and moduli of smoothness: computation and equivalence theorems, J. Approx. Theory, Volume 153 (2008) no. 1, pp. 19-39
Cité par Sources :