Partial Differential Equations
Inequalities related to liftings and applications
[Inégalités relatives aux relèvements et applications]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 17-18, pp. 957-962.

Nous présentons deux inégalités pour des relèvements des applications régulières du tore Td dans le cercle unité S1. Ces inégalités nous permettent de répondre à une question de J. Bourgain, H. Brezis, et P. Mironescu dans [J. Bourgain, H. Brezis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math. 58 (2005) 529–551] et d'établir une estimation des relèvements dans l'esprit de R.R. Coifman et Y. Meyer [R.R. Coifman, Y. Meyer, Une généralisation du théorème de Calderon sur l'intégrale de Cauchy, in : Fourier Analysis, in : Proc. Sem., El Escorial, vol. 1, Asoc. Mat. Espa nola, Madrid, 1980, pp. 87–116].

We present two inequalities for liftings of smooth maps from the torus Td into the unit circle S1. Using these inequalities, we answer a question of J. Bourgain, H. Brezis, and P. Mironescu in [J. Bourgain, H. Brezis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math. 58 (2005) 529–551] and establish an estimate of liftings in the spirit of R.R. Coifman and Y. Meyer [R.R. Coifman, Y. Meyer, Une généralisation du théorème de Calderon sur l'intégrale de Cauchy, in: Fourier Analysis, in: Proc. Sem., El Escorial, vol. 1, Asoc. Mat. Espa nola, Madrid, 1980, pp. 87–116].

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.07.026
Nguyen, Hoai-Minh 1

1 Rutgers University, Department of Mathematics, Hill Center, Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA
@article{CRMATH_2008__346_17-18_957_0,
     author = {Nguyen, Hoai-Minh},
     title = {Inequalities related to liftings and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {957--962},
     publisher = {Elsevier},
     volume = {346},
     number = {17-18},
     year = {2008},
     doi = {10.1016/j.crma.2008.07.026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.07.026/}
}
TY  - JOUR
AU  - Nguyen, Hoai-Minh
TI  - Inequalities related to liftings and applications
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 957
EP  - 962
VL  - 346
IS  - 17-18
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.07.026/
DO  - 10.1016/j.crma.2008.07.026
LA  - en
ID  - CRMATH_2008__346_17-18_957_0
ER  - 
%0 Journal Article
%A Nguyen, Hoai-Minh
%T Inequalities related to liftings and applications
%J Comptes Rendus. Mathématique
%D 2008
%P 957-962
%V 346
%N 17-18
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.07.026/
%R 10.1016/j.crma.2008.07.026
%G en
%F CRMATH_2008__346_17-18_957_0
Nguyen, Hoai-Minh. Inequalities related to liftings and applications. Comptes Rendus. Mathématique, Tome 346 (2008) no. 17-18, pp. 957-962. doi : 10.1016/j.crma.2008.07.026. http://www.numdam.org/articles/10.1016/j.crma.2008.07.026/

[1] Bourgain, J.; Brezis, H. On the equation divY=f and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003), pp. 393-426

[2] Bourgain, J.; Brezis, H.; Mironescu, P. H12 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Etudes Sci., Volume 99 (2004), pp. 1-115

[3] Bourgain, J.; Brezis, H.; Mironescu, P. Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math., Volume 58 (2005), pp. 529-551

[4] Bourgain, J.; Brezis, H.; Nguyen, H.-M. A new estimate for the topological degree, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 787-791

[5] Brezis, H.; Nirenberg, L. Degree theory and BMO, Part I: Compact manifolds without boundaries, Selecta Math., Volume 1 (1995), pp. 197-263

[6] Coifman, R.R.; Meyer, Y. Une généralisation du théorème de Calderon sur l'intégrale de Cauchy, Fourier Analysis, Proc. Sem., El Escorial, vol. 1, Asoc. Mat. Espa nola, Madrid, 1980, pp. 87-116

[7] Mironescu, P. Sobolev maps on manifolds: degree, approximation, lifting, Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 413-436 (In honor of Ham Brezis)

[8] Mironescu, P. Lifting default for S1-valued maps, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) | DOI

[9] Nguyen, H.-M. Optimal constant in a new estimate for the degree, J. d'Analyse Math., Volume 101 (2007), pp. 367-395

Cité par Sources :