Dans cette Note, on s'intéresse au problème de la construction d'une courbe régulière Γ telle que
In this Note, we deal with the problem of constructing a regular (smooth) curve Γ such that
Accepté le :
Publié le :
@article{CRMATH_2008__346_17-18_1017_0, author = {Claisse, Alexandra and Frey, Pascal}, title = {Construction d'une courbe r\'eguli\`ere d'approximation d'un ensemble de points}, journal = {Comptes Rendus. Math\'ematique}, pages = {1017--1022}, publisher = {Elsevier}, volume = {346}, number = {17-18}, year = {2008}, doi = {10.1016/j.crma.2008.07.021}, language = {fr}, url = {https://www.numdam.org/articles/10.1016/j.crma.2008.07.021/} }
TY - JOUR AU - Claisse, Alexandra AU - Frey, Pascal TI - Construction d'une courbe régulière d'approximation d'un ensemble de points JO - Comptes Rendus. Mathématique PY - 2008 SP - 1017 EP - 1022 VL - 346 IS - 17-18 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.07.021/ DO - 10.1016/j.crma.2008.07.021 LA - fr ID - CRMATH_2008__346_17-18_1017_0 ER -
%0 Journal Article %A Claisse, Alexandra %A Frey, Pascal %T Construction d'une courbe régulière d'approximation d'un ensemble de points %J Comptes Rendus. Mathématique %D 2008 %P 1017-1022 %V 346 %N 17-18 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2008.07.021/ %R 10.1016/j.crma.2008.07.021 %G fr %F CRMATH_2008__346_17-18_1017_0
Claisse, Alexandra; Frey, Pascal. Construction d'une courbe régulière d'approximation d'un ensemble de points. Comptes Rendus. Mathématique, Tome 346 (2008) no. 17-18, pp. 1017-1022. doi : 10.1016/j.crma.2008.07.021. https://www.numdam.org/articles/10.1016/j.crma.2008.07.021/
[1] Numerical discretisation of boundary conditions for first order Hamilton–Jacobi equation n triangular meshes, Comm. Pure Appl. Math., Volume 49 (1996), pp. 1339-1373
[2] D. Cohen-Steiner, F. Da, A greedy Delaunay based surface reconstruction algorithm, preprint INRIA RR-4564, 2002
[3] Two approximations of solutions of Hamilton–Jacobi equations, Math. Comp., Volume 43 (1984), pp. 1-19
[4] T.K. Dey, J. Giesen, J. Hudson, Delaunay based shape reconstruction from large data, in: Proc. IEEE Symposium in Parallel and Large Data Visualization and Graphics, 2001, pp. 19–27
[5] Contrôle de l'approximaion géométrique d'une interface par une métrique anisotrope, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 537-542
[6] Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods, Numer. Algorithms, Volume 39 (2005) no. 1–3, pp. 155-173
[7] Weighted ENO schemes for Hamilton–Jacobi equations, SIAM J. Sci. Comput., Volume 21 (2000), pp. 2126-2143
[8] Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., Volume 79 (1988), pp. 12-49
[9] Fast marching methods, SIAM Rev., Volume 41 (1999) no. 2, pp. 199-235
[10] A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., Volume 114 (1994), pp. 146-159
[11] Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method, Comput. Vision and Image Understanding, Volume 80 (2000), pp. 295-314
[12] Visualization, analysis and shape reconstruction of unorganised datasets (Osher, S.; Paragios, N., eds.), Geometric Level Set Methods in Imaging, Vision and Graphics, Springer, 2002
Cité par Sources :