Nous étendons à toute mesure de probabilité, la notion d'automate cellulaire μ-equicontinus introduit en premier lieu pour des mesures de Bernoulli par Gilman et nous montrons que l'entropie de l'automate est nulle si μ est invariante mais aussi que la suite des mesures images d'une mesure ergodique pour le décalage converge en moyenne de Cesàro vers une mesure invariante notée
Extending to all probability measures the notion of μ-equicontinuous cellular automata introduced for Bernoulli measures by Gilman, we show that the entropy is null if μ is an invariant measure and that the sequence of image measures of a shift ergodic measure by iterations of such automata converges in Cesàro mean to an invariant measure
Accepté le :
Publié le :
@article{CRMATH_2008__346_17-18_995_0, author = {Tisseur, Pierre}, title = {About a low complexity class of cellular automata}, journal = {Comptes Rendus. Math\'ematique}, pages = {995--998}, publisher = {Elsevier}, volume = {346}, number = {17-18}, year = {2008}, doi = {10.1016/j.crma.2008.07.018}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2008.07.018/} }
TY - JOUR AU - Tisseur, Pierre TI - About a low complexity class of cellular automata JO - Comptes Rendus. Mathématique PY - 2008 SP - 995 EP - 998 VL - 346 IS - 17-18 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.07.018/ DO - 10.1016/j.crma.2008.07.018 LA - en ID - CRMATH_2008__346_17-18_995_0 ER -
%0 Journal Article %A Tisseur, Pierre %T About a low complexity class of cellular automata %J Comptes Rendus. Mathématique %D 2008 %P 995-998 %V 346 %N 17-18 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2008.07.018/ %R 10.1016/j.crma.2008.07.018 %G en %F CRMATH_2008__346_17-18_995_0
Tisseur, Pierre. About a low complexity class of cellular automata. Comptes Rendus. Mathématique, Tome 346 (2008) no. 17-18, pp. 995-998. doi : 10.1016/j.crma.2008.07.018. https://www.numdam.org/articles/10.1016/j.crma.2008.07.018/
[1] Some properties of cellular automata with equicontinuity points, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 36 (2000) no. 5, pp. 569-582
[2] Classes of linear automata, Ergodic Theory and Dynamical Systems, Volume 7 (1987), pp. 105-118
[3] Periodic behaviour of linear automata, Dynamical Systems, Lecture Notes in Mathematics, vol. 1342, Springer, New York, 1988, pp. 216-219
[4] Cellular automata and Lyapunov exponents, Nonlinearity, Volume 13 (2000), pp. 1547-1560
[5] P. Tisseur, Density of periodic points, invariant measures and almost equicontinuous points of cellular automata, Preprint
[6] Theory and Applications of Cellular Automata, World Scientific, 1986
Cité par Sources :