Dans cette Note nous montrons qu'il existe une partie résiduelle dans l'ensemble des champs vectoriels qui préservent l'élément de volume pour laquelle tout est topologiquement mélangeant.
In this Note we prove that there exists a residual subset of the set of divergence-free vector fields defined on a compact, connected Riemannian manifold M, such that any vector field in this residual satisfies the following property: Given any two nonempty open subsets U and V of M, there exists such that for any .
Accepté le :
Publié le :
@article{CRMATH_2008__346_21-22_1169_0, author = {Bessa, M\'ario}, title = {A generic incompressible flow is topological mixing}, journal = {Comptes Rendus. Math\'ematique}, pages = {1169--1174}, publisher = {Elsevier}, volume = {346}, number = {21-22}, year = {2008}, doi = {10.1016/j.crma.2008.07.012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.07.012/} }
TY - JOUR AU - Bessa, Mário TI - A generic incompressible flow is topological mixing JO - Comptes Rendus. Mathématique PY - 2008 SP - 1169 EP - 1174 VL - 346 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.07.012/ DO - 10.1016/j.crma.2008.07.012 LA - en ID - CRMATH_2008__346_21-22_1169_0 ER -
%0 Journal Article %A Bessa, Mário %T A generic incompressible flow is topological mixing %J Comptes Rendus. Mathématique %D 2008 %P 1169-1174 %V 346 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.07.012/ %R 10.1016/j.crma.2008.07.012 %G en %F CRMATH_2008__346_21-22_1169_0
Bessa, Mário. A generic incompressible flow is topological mixing. Comptes Rendus. Mathématique, Tome 346 (2008) no. 21-22, pp. 1169-1174. doi : 10.1016/j.crma.2008.07.012. http://www.numdam.org/articles/10.1016/j.crma.2008.07.012/
[1] Robust transitivity and topological mixing for -flows, Proc. Amer. Math. Soc., Volume 132 (2003) no. 3, pp. 699-705
[2] A pasting lemma and some applications for conservative systems, Ergodic Theory Dynam. Systems, Volume 27 (2007) no. 6, pp. 1399-1417
[3] The Lyapunov exponents of generic zero divergence three-dimensional vector fields, Ergodic Theory Dynam. Systems, Volume 27 (2007) no. 6, pp. 1445-1472
[4] M. Bessa and J. Rocha, On -robust transitivity of volume-preserving flows, J. Differential Equations (2008), in press
[5] Récurrence et généricité, Invent. Math., Volume 158 (2004) no. 1, pp. 33-104
[6] On the volume elements on a manifold, Trans. Amer. Math. Soc., Volume 120 (1965), pp. 286-294
[7] Geometric Theory of Dynamical Systems, Springer Verlag, 1982
[8] The closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems, Volume 3 (1983), pp. 261-313
[9] Generic properties of conservative systems, Amer. J. Math., Volume 92 (1970), pp. 562-603
[10] connecting lemmas, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5213-5230
[11] Regularisation des champs vectoriels qui préservent l'elément de volume, Bol. Soc. Bras. Mat., Volume 10 (1979) no. 2, pp. 51-56
Cité par Sources :