Dans leur livre, Rapoport et Zink ont construit des espaces de périodes, rigides analytiques pour les isocristaux filtrés de Fontaine. Ils ont construits également des morphismes de périodes entre des espaces modulaires des groupes de Barsotti–Tate et certains de leurs espaces de périodes. Dans cette Note nous déterminons l'image des morphismes de périodes, contribuant ainsi à une question de Grothendieck. Nous donnons des examples montrant que l'image ne coïncide que rarement avec tout l'espace de périodes de Rapoport–Zink.
In their book Rapoport and Zink constructed rigid analytic period spaces for Fontaine's filtered isocrystals, and period morphisms from moduli spaces of p-divisible groups to some of these period spaces. We determine the image of these period morphisms, thereby contributing to a question of Grothendieck. We give examples showing that only in rare cases the image is all of the Rapoport–Zink period space.
Accepté le :
Publié le :
@article{CRMATH_2008__346_21-22_1123_0, author = {Hartl, Urs}, title = {On period spaces for \protect\emph{p}-divisible groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1123--1128}, publisher = {Elsevier}, volume = {346}, number = {21-22}, year = {2008}, doi = {10.1016/j.crma.2008.07.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.07.003/} }
TY - JOUR AU - Hartl, Urs TI - On period spaces for p-divisible groups JO - Comptes Rendus. Mathématique PY - 2008 SP - 1123 EP - 1128 VL - 346 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.07.003/ DO - 10.1016/j.crma.2008.07.003 LA - en ID - CRMATH_2008__346_21-22_1123_0 ER -
Hartl, Urs. On period spaces for p-divisible groups. Comptes Rendus. Mathématique, Tome 346 (2008) no. 21-22, pp. 1123-1128. doi : 10.1016/j.crma.2008.07.003. http://www.numdam.org/articles/10.1016/j.crma.2008.07.003/
[1] Équations différentielles p-adiques et -modules filtrés (Preprint on arXiv: version from June 29th, 2004) | arXiv
[2] Limites de représentations cristallines, Compos. Math., Volume 140 (2004) no. 6, pp. 1473-1498
[3] Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Mathematical Surveys and Monographs, vol. 33, Amer. Math. Soc., Providence, RI, 1990
[4] Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHES, Volume 78 (1993), pp. 5-161
[5] P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre, prépublication 96-03, IRMA, Rennes, 1996
[6] Groupes p-divisibles, groupes finis et modules ifltrés, Ann. of Math., Volume 152 (2000), pp. 489-549
[7] Espaces vectoriels de dimension finie et répresentations de de Rham http://www.math.jussieu.fr/~colmez (Preprint 2003, available at)
[8] Construction des représentations p-adiques semi-stables, Invent. Math., Volume 140 (2000) no. 1, pp. 1-43
[9] Coverings of p-adic symmetric domains, Funct. Anal. Appl., Volume 10 (1976), pp. 107-115
[10] G. Faltings, Coverings of p-adic period domains, Preprint, 2007
[11] Modules galoisiens, modules filtrés et anneaux de Barsotti–Tate, Journées de géométrie algébrique de Rennes (III), Astérisque, vol. 65, 1979, pp. 3-80
[12] Groupes de Barsotti–Tate et cristaux, Tome 1, Nice, 1970, Gauthier-Villars, Paris (1971), pp. 431-436
[13] Period spaces for Hodge structures in equal characteristic (Preprint on arXiv:) | arXiv
[14] On a conjecture of Rapoport and Zink (Preprint on arXiv: version from May 10, 2006) | arXiv
[15] A dictionary between Fontaine-theory and its analogue in equal characteristic (Preprint on arXiv:) | arXiv
[16] Slope filtrations revisited, Doc. Math., Volume 10 (2005), pp. 447-525
[17] Crystalline representations and F-crystals, Algebraic Geometry and Number Theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459-496
[18] The Crystals Associated to Barsotti–Tate Groups, Lecture Notes in Mathematics, vol. 264, Springer-Verlag, Berlin, 1972
[19] Period Spaces for p-Divisible Groups, Ann. Math. Stud., vol. 141, Princeton University Press, Princeton, 1996
Cité par Sources :