Differential Topology
Versal braid monodromy
[Monodromie verselle des tresses]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 15-16, pp. 873-876.

Nous étendons la méthode de Zariski, qui sert à déterminer la monodromie des tresses pour le discriminant d'une déformation verselle de singularités d'une hypersurface, d'une sous-déformation générique de basse dimension vers des déformations hautement non génériques. Aux frais d'une induction sur les singularités adjacentes, mais sans devoir prendre en compte les questions de généricité, il est possible ainsi de déformer par des polynômes très simples.

We extend the method of Zariski to determine the braid monodromy group of the discriminant of a versal unfolding of a hypersurface singularity from low-dimensional generic subunfoldings to highly non-generic ones. At the expense of an induction over adjacent singularities, it is thus possible to neglect genericity issues and perturb by very simple polynomials only.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.07.002
Lönne, Michael 1

1 Mathematisches Institut, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
@article{CRMATH_2008__346_15-16_873_0,
     author = {L\"onne, Michael},
     title = {Versal braid monodromy},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {873--876},
     publisher = {Elsevier},
     volume = {346},
     number = {15-16},
     year = {2008},
     doi = {10.1016/j.crma.2008.07.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.07.002/}
}
TY  - JOUR
AU  - Lönne, Michael
TI  - Versal braid monodromy
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 873
EP  - 876
VL  - 346
IS  - 15-16
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.07.002/
DO  - 10.1016/j.crma.2008.07.002
LA  - en
ID  - CRMATH_2008__346_15-16_873_0
ER  - 
%0 Journal Article
%A Lönne, Michael
%T Versal braid monodromy
%J Comptes Rendus. Mathématique
%D 2008
%P 873-876
%V 346
%N 15-16
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.07.002/
%R 10.1016/j.crma.2008.07.002
%G en
%F CRMATH_2008__346_15-16_873_0
Lönne, Michael. Versal braid monodromy. Comptes Rendus. Mathématique, Tome 346 (2008) no. 15-16, pp. 873-876. doi : 10.1016/j.crma.2008.07.002. http://www.numdam.org/articles/10.1016/j.crma.2008.07.002/

[1] Arnold, V.I.; Goryunov, V.V.; Lyashko, O.V.; Vasilev, V.A. Dynamical Systems VI, Springer, Berlin, 1993

[2] Brieskorn, E. Vue d'ensemble sur les problèmes de monodromie, Singularités à Cargèse, Astérisque, vol. 7/8, Soc. Math. France, Paris, 1973, pp. 393-413

[3] Ebeling, W. Functions of Several Complex Variables and their Singularities, Graduate Studies in Mathematics, vol. 83, Amer. Math. Soc., Providence, RI, 2007

[4] Hefez, A.; Lazzeri, F. The intersection matrix of Brieskorn singularities, Invent. Math., Volume 25 (1974), pp. 143-157

[5] Lönne, M. Fundamental group of discriminant complements of Brieskorn Pham polynomials, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 93-96

[6] Lönne, M. Braid monodromy of hypersurface singularities, 2003 (Habilitationsschrift, Hannover) | arXiv

Cité par Sources :