Nous donnons un résultat de fermeture pour un ensemble convexe de semi-martingales BMO, qui inclut les solutions de EDSRs à croissance quadratique. Nous en déduisons des résultats de convergence et de stabilité monotone pour les EDSRs à croissance quadratique.
We give a closedness result for a convex set of BMO semi-martingales, that contains solutions to quadratic BSDEs. We deduce convergence and monotone stability results for quadratic BSDEs.
Accepté le :
Publié le :
@article{CRMATH_2008__346_15-16_881_0, author = {Barrieu, Pauline and Cazanave, Nicolas and El Karoui, Nicole}, title = {Closedness results for {BMO} semi-martingales and application to quadratic {BSDEs}}, journal = {Comptes Rendus. Math\'ematique}, pages = {881--886}, publisher = {Elsevier}, volume = {346}, number = {15-16}, year = {2008}, doi = {10.1016/j.crma.2008.06.010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.06.010/} }
TY - JOUR AU - Barrieu, Pauline AU - Cazanave, Nicolas AU - El Karoui, Nicole TI - Closedness results for BMO semi-martingales and application to quadratic BSDEs JO - Comptes Rendus. Mathématique PY - 2008 SP - 881 EP - 886 VL - 346 IS - 15-16 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.06.010/ DO - 10.1016/j.crma.2008.06.010 LA - en ID - CRMATH_2008__346_15-16_881_0 ER -
%0 Journal Article %A Barrieu, Pauline %A Cazanave, Nicolas %A El Karoui, Nicole %T Closedness results for BMO semi-martingales and application to quadratic BSDEs %J Comptes Rendus. Mathématique %D 2008 %P 881-886 %V 346 %N 15-16 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.06.010/ %R 10.1016/j.crma.2008.06.010 %G en %F CRMATH_2008__346_15-16_881_0
Barrieu, Pauline; Cazanave, Nicolas; El Karoui, Nicole. Closedness results for BMO semi-martingales and application to quadratic BSDEs. Comptes Rendus. Mathématique, Tome 346 (2008) no. 15-16, pp. 881-886. doi : 10.1016/j.crma.2008.06.010. http://www.numdam.org/articles/10.1016/j.crma.2008.06.010/
[1] Weighted norm inequalities and hedging in incomplete market, Finance and Stochastics, Volume 1 (1997), pp. 181-227
[2] A compactness principle for bounded sequences of martingales with applications, Proceedings of the Seminar of Stochastic Analysis, Random Fields and Applications, Progress in Probability, vol. 45, 1999, pp. 137-173
[3] Inégalités de normes avec poids, Séminaire de probabilités (Strasbourg), Volume 13 (1979), pp. 313-331
[4] Utility maximization in incomplete markets, Annals of Applied Probability, Volume 15 (2005), pp. 1691-1712
[5] Continuous Exponential Martingales and BMO, Lecture Notes in Mathematics, vol. 1579, Springer-Verlag, 1994
[6] Backward stochastic differential equations and partial differential equations with quadratic growth, Annals of Probability, Volume 28 (2000), pp. 558-602
[7] Backward stochastic differential equations with continuous coefficient, Statistics and Probability Letters, Volume 32 (1997), pp. 425-430
[8] Adapted solution of a backward stochastic differential equation, Systems and Control Letters, Volume 14 (1990), pp. 55-61
[9] Sous-espaces denses dans L1 ou H1 et representation des martingales, Séminaire de Probabilité XII, Lecture Notes in Mathematics, vol. 649, Springer-Verlag, Berlin, 1978, pp. 265-309
Cité par Sources :