Nous proposons une nouvelle méthode pour appliquer le calcul fonctionnel lipschitzien des formes de Dirichlet locales aux mesures aléatoires de Poisson.
We propose a new method to apply the Lipschitz functional calculus of local Dirichlet forms to Poisson random measures.
Accepté le :
Publié le :
@article{CRMATH_2008__346_13-14_779_0, author = {Bouleau, Nicolas}, title = {Error calculus and regularity of {Poisson} functionals: the lent particle method}, journal = {Comptes Rendus. Math\'ematique}, pages = {779--782}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.05.020/} }
TY - JOUR AU - Bouleau, Nicolas TI - Error calculus and regularity of Poisson functionals: the lent particle method JO - Comptes Rendus. Mathématique PY - 2008 SP - 779 EP - 782 VL - 346 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.05.020/ DO - 10.1016/j.crma.2008.05.020 LA - en ID - CRMATH_2008__346_13-14_779_0 ER -
%0 Journal Article %A Bouleau, Nicolas %T Error calculus and regularity of Poisson functionals: the lent particle method %J Comptes Rendus. Mathématique %D 2008 %P 779-782 %V 346 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.05.020/ %R 10.1016/j.crma.2008.05.020 %G en %F CRMATH_2008__346_13-14_779_0
Bouleau, Nicolas. Error calculus and regularity of Poisson functionals: the lent particle method. Comptes Rendus. Mathématique, Tome 346 (2008) no. 13-14, pp. 779-782. doi : 10.1016/j.crma.2008.05.020. http://www.numdam.org/articles/10.1016/j.crma.2008.05.020/
[1] Analysis and geometry on configuration spaces, J. Funct. Anal., Volume 154 (1998) no. 2, pp. 444-500
[2] Error Calculus for Finance and Physics: The Language of Dirichlet Forms, De Gruyter, 2003
[3] Dirichlet Forms and Analysis on Wiener Space, De Gruyter, 1991
[4] A criterion of density for solutions of Poisson-driven SDEs, Probab. Theory Relat. Fields, Volume 118 (2000), pp. 406-426
[5] Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps, Stochastic Process. Appl., Volume 116 (2006), pp. 1743-1769
[6] Construction of diffusions on configuration spaces, Osaka J. Math., Volume 37 (2000), pp. 273-314
[7] Anticipative calculus for the Poisson process based on the Fock space, Sém. Probabilités XXIV, Lecture Notes in Math., vol. 1426, Springer, 1990, pp. 154-165
[8] On the existence of smooth densities for jump processes, Probab. Theory Relat. Fields, Volume 105 (1996), pp. 481-511
[9] A pointwise equivalence of gradients on configuration spaces, C. R. Acad. Sci. Paris, Volume 327 (1998), pp. 677-682
[10] Canonical Lévy processes and Malliavin calculus, Stochastic Process. Appl., Volume 117 (2007), pp. 165-187
Cité par Sources :