Number Theory
On the periodicity of an arithmetical function
[Sur la périodicité d'une fonction arithmétique]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 13-14, pp. 717-721.

Soit k0 un entier, en étudiant le plus petit commun multiple de k+1 entiers consécutifs Farhi a introduit la fonction arithmétique définie par gk(n):=n(n+1)(n+k)ppcm(n,n+1,,n+k) pour n entier positif. Farhi a démontré que gk est périodique et que k! en est une période. Dans le même temps Farhi a posé la question de déterminer la plus petite période de gk. Dans cette Note, nous démontrons pour commencer gk(1)|gk(n) pour tout entier positif n. Puis, utilisant ce résultat, nous montrons que ppcm(1,2,,k) est une période de gk pour tout entier positif k, ce qui améliore le résultat de Farhi.

Let k0 be an integer. When studying the least common multiple of k+1 consecutive integers, Farhi introduced the arithmetical function gk defined for any positive integer n by gk(n):=n(n+1)(n+k)lcm(n,n+1,,n+k). Farhi proved that gk is periodic and k! is a period of gk. Meanwhile Farhi raised an open problem determining the smallest positive period of gk. In this Note, we first show that gk(1)|gk(n) for all positive integers n. Consequently, using this result, we show that for all positive integers k, lcm(1,2,,k) is a period of gk, thus improving Farhi's result.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.05.019
Hong, Shaofang 1 ; Yang, Yujuan 1

1 Mathematical College, Sichuan University, Chengdu 610064, PR China
@article{CRMATH_2008__346_13-14_717_0,
     author = {Hong, Shaofang and Yang, Yujuan},
     title = {On the periodicity of an arithmetical function},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {717--721},
     publisher = {Elsevier},
     volume = {346},
     number = {13-14},
     year = {2008},
     doi = {10.1016/j.crma.2008.05.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.05.019/}
}
TY  - JOUR
AU  - Hong, Shaofang
AU  - Yang, Yujuan
TI  - On the periodicity of an arithmetical function
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 717
EP  - 721
VL  - 346
IS  - 13-14
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.05.019/
DO  - 10.1016/j.crma.2008.05.019
LA  - en
ID  - CRMATH_2008__346_13-14_717_0
ER  - 
%0 Journal Article
%A Hong, Shaofang
%A Yang, Yujuan
%T On the periodicity of an arithmetical function
%J Comptes Rendus. Mathématique
%D 2008
%P 717-721
%V 346
%N 13-14
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.05.019/
%R 10.1016/j.crma.2008.05.019
%G en
%F CRMATH_2008__346_13-14_717_0
Hong, Shaofang; Yang, Yujuan. On the periodicity of an arithmetical function. Comptes Rendus. Mathématique, Tome 346 (2008) no. 13-14, pp. 717-721. doi : 10.1016/j.crma.2008.05.019. http://www.numdam.org/articles/10.1016/j.crma.2008.05.019/

[1] Apostol, T.M. Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976

[2] Bachman, G.; Kessler, T. On divisibility properties of certain multinomial coefficients II, J. Number Theory, Volume 106 (2004), pp. 1-12

[3] Farhi, B. Minoration non triviales du plus petit commun multiple de certaines suites finies d'entiers, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 469-474

[4] Farhi, B. Nontrivial lower bounds for the least common multiple of some finite sequences of integers, J. Number Theory, Volume 125 (2007), pp. 393-411

[5] Green, B.; Tao, T. The primes contain arbitrarily long arithmetic progression, Ann. of Math. (2), Volume 167 (2008), pp. 481-548

[6] Hanson, D. On the product of the primes, Canad. Math. Bull., Volume 15 (1972), pp. 33-37

[7] Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, Oxford University Press, London, 1960

[8] Hong, S.; Feng, W. Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 695-698

[9] Hong, S.; Loewy, R. Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasgow Math. J., Volume 46 (2004), pp. 551-569

[10] S. Hong, Y. Yang, Improvements of lower bounds for the least common multiple of finite arithmetic progressions, Proc. Amer. Math. Soc., in press

[11] Myerson, G.; Sander, J. What the least common multiple divides II, J. Number Theory, Volume 61 (1996), pp. 67-84

[12] Nair, M. On Chebyshev-type inequalities for primes, Amer. Math. Monthly, Volume 89 (1982), pp. 126-129

Cité par Sources :

This work was supported partially by Program for New Century Excellent Talents in University Grant # NCET-06-0785.