Nous déterminons tous les entiers totalement positifs qui ne peuvent pas être représentés comme des sommes de carrés distincts d'entiers dans .
In this Note, we determine all the totally positive integers of which cannot be represented as sums of distinct integral squares.
Accepté le :
Publié le :
@article{CRMATH_2008__346_13-14_723_0, author = {Park, Poo-Sung}, title = {Sums of distinct integral squares in $ \mathbb{Q}(\sqrt{5})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {723--725}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.05.008/} }
TY - JOUR AU - Park, Poo-Sung TI - Sums of distinct integral squares in $ \mathbb{Q}(\sqrt{5})$ JO - Comptes Rendus. Mathématique PY - 2008 SP - 723 EP - 725 VL - 346 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.05.008/ DO - 10.1016/j.crma.2008.05.008 LA - en ID - CRMATH_2008__346_13-14_723_0 ER -
%0 Journal Article %A Park, Poo-Sung %T Sums of distinct integral squares in $ \mathbb{Q}(\sqrt{5})$ %J Comptes Rendus. Mathématique %D 2008 %P 723-725 %V 346 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.05.008/ %R 10.1016/j.crma.2008.05.008 %G en %F CRMATH_2008__346_13-14_723_0
Park, Poo-Sung. Sums of distinct integral squares in $ \mathbb{Q}(\sqrt{5})$. Comptes Rendus. Mathématique, Tome 346 (2008) no. 13-14, pp. 723-725. doi : 10.1016/j.crma.2008.05.008. http://www.numdam.org/articles/10.1016/j.crma.2008.05.008/
[1] Über eine zahlentheoretische Anwendung von Modulfunktionen einer Veränderlichen, Math. Ann., Volume 100 (1928), pp. 411-437
[2] On nonvanishing sum of integral squares of , Kangweon-Kyungki Math. J., Volume 6 (1998) no. 2, pp. 299-302
[3] Über die Darstellung total positiver Zahlen des Körpers als Summe von drei Quadraten, Abh. Math. Sem. Hansischen Univ., Volume 14 (1941), pp. 185-191
[4] Sums of mth powers of algebraic integers, Ann. of Math., Volume 46 (1945), pp. 313-339 (Ges. Abh. III, pp. 12–46)
[5] Über Zerlegungen in ungleiche Quadratzahlen, Math. Z., Volume 51 (1949), pp. 289-290
Cité par Sources :