Dans cette Note, pour une trajectoire d'un processus gaussien, un estimateur des m points de ruptures (m est supposé connu) du paramètre de longue mémoire ou d'autosimilarité est construit et on montre qu'il vérifie un théorème limite avec une vitesse de convergence explicite. Dans chaque zone (estimée) où ce paramètre est constant, un estimateur de ce paramètre vérifie un théorème limite centrale et un test d'ajustement est également mis en place.
In this Note, an estimator of m instants (m is known) of abrupt changes of the parameter of long-range dependence or self-similarity is proved to satisfy a limit theorem with an explicit convergence rate for a sample of a Gaussian process. In each estimated zone where the parameter is supposed not to change, a central limit theorem is established for the parameter's (of long-range dependence, self-similarity) estimator and a goodness-of-fit test is also built.
Accepté le :
Publié le :
@article{CRMATH_2008__346_13-14_789_0, author = {Bardet, Jean-Marc and Kammoun, Imen}, title = {Detecting abrupt changes of the long-range dependence or the self-similarity of a {Gaussian} process}, journal = {Comptes Rendus. Math\'ematique}, pages = {789--794}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.05.007/} }
TY - JOUR AU - Bardet, Jean-Marc AU - Kammoun, Imen TI - Detecting abrupt changes of the long-range dependence or the self-similarity of a Gaussian process JO - Comptes Rendus. Mathématique PY - 2008 SP - 789 EP - 794 VL - 346 IS - 13-14 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.05.007/ DO - 10.1016/j.crma.2008.05.007 LA - en ID - CRMATH_2008__346_13-14_789_0 ER -
%0 Journal Article %A Bardet, Jean-Marc %A Kammoun, Imen %T Detecting abrupt changes of the long-range dependence or the self-similarity of a Gaussian process %J Comptes Rendus. Mathématique %D 2008 %P 789-794 %V 346 %N 13-14 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.05.007/ %R 10.1016/j.crma.2008.05.007 %G en %F CRMATH_2008__346_13-14_789_0
Bardet, Jean-Marc; Kammoun, Imen. Detecting abrupt changes of the long-range dependence or the self-similarity of a Gaussian process. Comptes Rendus. Mathématique, Tome 346 (2008) no. 13-14, pp. 789-794. doi : 10.1016/j.crma.2008.05.007. http://www.numdam.org/articles/10.1016/j.crma.2008.05.007/
[1] Long-range dependent: revisiting aggregation with wavelets, JTSA, Volume 19 (1998), pp. 253-266
[2] A central limit theorem for the quadratic variations of the step fractional Brownian motion, Statistical Inference for Stochastic Processes, Volume 10 (2006), pp. 1-27
[3] Statistical Study of the Wavelet Analysis of Fractional Brownian Motion, IEEE Trans. Inform. Theory, Volume 48 (2002) no. 4, pp. 991-999
[4] J.M. Bardet, H. Bibi, A. Jouini, Adaptative wavelet based estimator of the memory parameter for stationary Gaussian processes, Bernoulli (2008), in press
[5] J.M. Bardet, I. Kammoun, Detecting changes in the fluctuations of a Gaussian process and an application to heartbeat time series, Preprint Hal-00194909, 2007
[6] Testing for a change of the long-memory parameter, Biometrika, Volume 83 (1996), pp. 627-638
[7] Wavelet analysis and synthesis of fractional Brownian motion, IEEE Trans. Inform. Theory, Volume 38 (1992), pp. 910-917
[8] The change-point problem for dependent observations, J. Statist. Plann. Inference, Volume 53 (1996), pp. 297-310
[9] Change-point detection in long-memory processes, J. Multivariate Anal., Volume 78 (2001), pp. 134-218
[10] Detection and estimation of changes in regime (Doukhan, P.; Oppenheim, G.; Taqqu, M.S., eds.), Long-Range Dependence: Theory and Applications, Birkhäuser, 2003, pp. 325-337
[11] Detection of multiple changes in a sequence of dependent variables, Stochastic Process Appl., Volume 83 (1999), pp. 79-102
[12] The multiple change-points problem for the spectral distribution, Bernoulli, Volume 6 (2000), pp. 845-869
[13] Detecting multiple change-points in multivariate time series, Lithuanian Math. J., Volume 46 (2006), pp. 351-376
[14] On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter, J. Time Ser. Anal. (2007), pp. 155-187
Cité par Sources :