Numerical Analysis
Numerical method for a dynamic optimization problem arising in the modeling of a population of aerosol particles
[Une méthode numérique pour un problème d'optimisation dynamique lié à une population de particules]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 11-12, pp. 677-680.

Nous proposons un modèle pour le calcul de l'évolution d'une population de particules. Ce modèle couple un système d'équations différentielles et une séquence de problèmes d'optimisation sous contraintes.

Les conditions de premier ordre de chacun des problèmes d'optimisation et une discrétisation implicite des équations différentielles forment un système d'équations non linéaires qui est traité avec une méthode de point intérieur, couplé à une itération de Newton. Le système linéaire correspondant a une structure par blocs. Une méthode de résolution directe basée sur le complément de Schur prend en compte la structure creuse de la matrice et permet de découpler les différentes particules du système. Des résultats numériques pour une population de particules organiques montrent l'évolution de particules de différentes tailles.

A model coupling differential equations and a sequence of constrained optimization problems is proposed for the simulation of the evolution of a population of particles at equilibrium interacting through a common medium.

The first order optimality conditions of the optimization problems relaxed with barrier functions are coupled with the differential equations into a system of differential-algebraic equations that is discretized in time with an implicit first order scheme. The resulting system of nonlinear algebraic equations is solved at each time step with an interior-point/Newton method. The Newton system is block-structured and solved with Schur complement techniques, in order to take advantage of its sparsity. Application to the dynamics of a population of organic atmospheric aerosol particles is given to illustrate the evolution of particles of different sizes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.04.016
Caboussat, Alexandre 1 ; Leonard, Allison 1

1 Department of Mathematics, University of Houston, 4800 Calhoun Rd, Houston, TX 77204-3008, USA
@article{CRMATH_2008__346_11-12_677_0,
     author = {Caboussat, Alexandre and Leonard, Allison},
     title = {Numerical method for a dynamic optimization problem arising in the modeling of a population of aerosol particles},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {677--680},
     publisher = {Elsevier},
     volume = {346},
     number = {11-12},
     year = {2008},
     doi = {10.1016/j.crma.2008.04.016},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.04.016/}
}
TY  - JOUR
AU  - Caboussat, Alexandre
AU  - Leonard, Allison
TI  - Numerical method for a dynamic optimization problem arising in the modeling of a population of aerosol particles
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 677
EP  - 680
VL  - 346
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.04.016/
DO  - 10.1016/j.crma.2008.04.016
LA  - en
ID  - CRMATH_2008__346_11-12_677_0
ER  - 
%0 Journal Article
%A Caboussat, Alexandre
%A Leonard, Allison
%T Numerical method for a dynamic optimization problem arising in the modeling of a population of aerosol particles
%J Comptes Rendus. Mathématique
%D 2008
%P 677-680
%V 346
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.04.016/
%R 10.1016/j.crma.2008.04.016
%G en
%F CRMATH_2008__346_11-12_677_0
Caboussat, Alexandre; Leonard, Allison. Numerical method for a dynamic optimization problem arising in the modeling of a population of aerosol particles. Comptes Rendus. Mathématique, Tome 346 (2008) no. 11-12, pp. 677-680. doi : 10.1016/j.crma.2008.04.016. http://www.numdam.org/articles/10.1016/j.crma.2008.04.016/

[1] Amundson, N.R.; Caboussat, A.; He, J.W.; Seinfeld, J.H. Primal-dual interior-point algorithm for chemical equilibrium problems related to modeling of atmospheric organic aerosols, J. Optim. Theory Appl., Volume 130 (2006) no. 3, pp. 375-407

[2] Amundson, N.R.; Caboussat, A.; He, J.W.; Landry, C.; Seinfeld, J.H. A dynamic optimization problem related to organic aerosols, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007) no. 8, pp. 519-522

[3] A. Caboussat, C. Landry, A second order scheme for solving optimization-constrained differential equations with discontinuities, in: Numerical Mathematics and Advanced Applications: Proceedings of Enumath 2007 the 7th European Conference on Numerical Mathematics and Advanced Applications, Graz, Austria, September 2007, submitted for publication

[4] Fiacco, A.V.; McCormick, G.P. Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, Inc., 1968

[5] Gondzio, J.; Grothey, A. Direct solution of linear systems of size 109 arising in optimization with interior point methods, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2006, pp. 513-525

[6] Gondzio, J.; Grothey, A. Solving nonlinear portfolio optimization problems with the primal-dual interior point method, Eur. J. Operational Res., Volume 181 (2007) no. 3, pp. 1019-1029

[7] Hairer, E.; Wanner, G. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, 1996

[8] Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998

[9] R.A. Zaveri, R.C. Easter, J.D. Fast, L.K. Peters, Model for simulating aerosol interactions and chemistry (MOSAIC), J. Geophys. Res. (2008), , in press | DOI

Cité par Sources :