Soient G le groupe affine «
Let G be the “
Accepté le :
Publié le :
@article{CRMATH_2008__346_11-12_649_0, author = {Hutn{\'\i}k, Ondrej}, title = {On the structure of the space of wavelet transforms}, journal = {Comptes Rendus. Math\'ematique}, pages = {649--652}, publisher = {Elsevier}, volume = {346}, number = {11-12}, year = {2008}, doi = {10.1016/j.crma.2008.04.013}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2008.04.013/} }
TY - JOUR AU - Hutník, Ondrej TI - On the structure of the space of wavelet transforms JO - Comptes Rendus. Mathématique PY - 2008 SP - 649 EP - 652 VL - 346 IS - 11-12 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.04.013/ DO - 10.1016/j.crma.2008.04.013 LA - en ID - CRMATH_2008__346_11-12_649_0 ER -
%0 Journal Article %A Hutník, Ondrej %T On the structure of the space of wavelet transforms %J Comptes Rendus. Mathématique %D 2008 %P 649-652 %V 346 %N 11-12 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2008.04.013/ %R 10.1016/j.crma.2008.04.013 %G en %F CRMATH_2008__346_11-12_649_0
Hutník, Ondrej. On the structure of the space of wavelet transforms. Comptes Rendus. Mathématique, Tome 346 (2008) no. 11-12, pp. 649-652. doi : 10.1016/j.crma.2008.04.013. https://www.numdam.org/articles/10.1016/j.crma.2008.04.013/
[1] Intermediate spaces and interpolation, the complex method, Studia Math., Volume 24 (1964), pp. 113-190
[2] Transforms associated to square integrable group representations II: Examples, Ann. Inst. Henri Poincaré, Volume 45 (1986), pp. 293-309
[3] O. Hutník, On Toeplitz-type operators related to wavelets, Integral Equations Operator Theory, submitted for publication
[4] Coherent States, Applications in Physics and Mathematical Physics, World Scientific, Singapore, 1985
[5] Weak type estimates for singular values of commutators on weighted Bergman spaces, Indiana Univ. Math. J., Volume 40 (1991), pp. 1315-1331
[6] Commutators based on the Calderón reproducing formula, Studia Math., Volume 104 (1993) no. 3, pp. 285-306
[7] T. Paul, États quantiques réalisés pas des fonctions analytiques dans le demi-plan, Thèse de 3ième cycle, Université Pierre et Marie Curie, 1984
[8] Functions analytic on the half-plane as quantum mechanical states, J. Math. Phys., Volume 25 (1984), pp. 3252-3262
[9] On the structure of Bergman and poly-Bergman spaces, Integral Equations Operator Theory, Volume 33 (1999), pp. 471-488
- The Zero Product of Toeplitz Operators on the 2‐Analytic Weighted Bergman Space, Journal of Function Spaces, Volume 2025 (2025) no. 1 | DOI:10.1155/jofs/4435105
- Radial operators on polyanalytic weighted Bergman spaces, Boletín de la Sociedad Matemática Mexicana, Volume 27 (2021) no. 2 | DOI:10.1007/s40590-021-00348-w
- Radial Operators on Polyanalytic Bargmann–Segal–Fock Spaces, Operator Algebras, Toeplitz Operators and Related Topics, Volume 279 (2020), p. 277 | DOI:10.1007/978-3-030-44651-2_18
- Continuous Stockwell transform: Coherent states and localization operators, Journal of Mathematical Physics, Volume 56 (2015) no. 7 | DOI:10.1063/1.4926950
- On the range of Stockwell transforms, Applied Mathematics and Computation, Volume 219 (2013) no. 17, p. 8904 | DOI:10.1016/j.amc.2013.03.028
- Super-Wavelets Versus Poly-Bergman Spaces, Integral Equations and Operator Theory, Volume 73 (2012) no. 2, p. 177 | DOI:10.1007/s00020-012-1956-x
- On Boundedness of Calderón–Toeplitz Operators, Integral Equations and Operator Theory, Volume 70 (2011) no. 4, p. 583 | DOI:10.1007/s00020-011-1883-2
- Wavelets from Laguerre Polynomials and Toeplitz-Type Operators, Integral Equations and Operator Theory, Volume 71 (2011) no. 3, p. 357 | DOI:10.1007/s00020-011-1907-y
- Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions, Applied and Computational Harmonic Analysis, Volume 29 (2010) no. 3, p. 287 | DOI:10.1016/j.acha.2009.11.004
- A note on wavelet subspaces, Monatshefte für Mathematik, Volume 160 (2010) no. 1, p. 59 | DOI:10.1007/s00605-008-0084-9
- On the structure of Gabor and super Gabor spaces, Monatshefte für Mathematik, Volume 161 (2010) no. 3, p. 237 | DOI:10.1007/s00605-009-0177-0
Cité par 11 documents. Sources : Crossref