On étudie des systèmes quasi-monotones d'équations complètement non-linéaires, uniformément elliptiques, de type Isaac. On obtient des résultats d'existence de solutions du problème de Dirichlet et une condition nécessaire et suffisante pour qu'un tel système satisfasse le principe de comparaison.
We study quasimonotone weakly coupled systems of uniformly elliptic equations of Isaac type. We prove results on existence of viscosity solutions of such systems and give a necessary and sufficient condition for such a system to satisfy the comparison principle.
Accepté le :
Publié le :
@article{CRMATH_2008__346_11-12_641_0, author = {Quaas, Alexander and Sirakov, Boyan}, title = {Solvability of monotone systems of fully nonlinear elliptic {PDE's}}, journal = {Comptes Rendus. Math\'ematique}, pages = {641--644}, publisher = {Elsevier}, volume = {346}, number = {11-12}, year = {2008}, doi = {10.1016/j.crma.2008.04.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.04.008/} }
TY - JOUR AU - Quaas, Alexander AU - Sirakov, Boyan TI - Solvability of monotone systems of fully nonlinear elliptic PDE's JO - Comptes Rendus. Mathématique PY - 2008 SP - 641 EP - 644 VL - 346 IS - 11-12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.04.008/ DO - 10.1016/j.crma.2008.04.008 LA - en ID - CRMATH_2008__346_11-12_641_0 ER -
%0 Journal Article %A Quaas, Alexander %A Sirakov, Boyan %T Solvability of monotone systems of fully nonlinear elliptic PDE's %J Comptes Rendus. Mathématique %D 2008 %P 641-644 %V 346 %N 11-12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.04.008/ %R 10.1016/j.crma.2008.04.008 %G en %F CRMATH_2008__346_11-12_641_0
Quaas, Alexander; Sirakov, Boyan. Solvability of monotone systems of fully nonlinear elliptic PDE's. Comptes Rendus. Mathématique, Tome 346 (2008) no. 11-12, pp. 641-644. doi : 10.1016/j.crma.2008.04.008. http://www.numdam.org/articles/10.1016/j.crma.2008.04.008/
[1] Harnack type estimates for nonlinear elliptic systems and applications, Ann. Inst. H. Poincaré Anal. Nonlinéaire, Volume 21 (2004) no. 5, pp. 543-590
[2] On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math., Volume 49 (1996), pp. 365-397
[3] Viscosity solutions for monotone systems of second-order elliptic PDE's, Comm. Partial Differential Equations, Volume 16 (1991) no. 6–7, pp. 1095-1128
[4] Principal eigenvalues and the Dirichlet problem for fully nonlinear operators, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006) no. 2, pp. 115-118
[5] Principal eigenvalues and the Dirichlet problem for fully nonlinear operators, Adv. Math., Volume 218 (2008) no. 1, pp. 105-135
Cité par Sources :