Soit E une courbe elliptique définie sur Q,
Let E be an elliptic curve defined over Q, let
Accepté le :
Publié le :
@article{CRMATH_2008__346_9-10_483_0, author = {D\k{a}browski, Andrzej}, title = {On the proportion of rank 0 twists of elliptic curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--486}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.025}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2008.03.025/} }
TY - JOUR AU - Dąbrowski, Andrzej TI - On the proportion of rank 0 twists of elliptic curves JO - Comptes Rendus. Mathématique PY - 2008 SP - 483 EP - 486 VL - 346 IS - 9-10 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.03.025/ DO - 10.1016/j.crma.2008.03.025 LA - en ID - CRMATH_2008__346_9-10_483_0 ER -
%0 Journal Article %A Dąbrowski, Andrzej %T On the proportion of rank 0 twists of elliptic curves %J Comptes Rendus. Mathématique %D 2008 %P 483-486 %V 346 %N 9-10 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2008.03.025/ %R 10.1016/j.crma.2008.03.025 %G en %F CRMATH_2008__346_9-10_483_0
Dąbrowski, Andrzej. On the proportion of rank 0 twists of elliptic curves. Comptes Rendus. Mathématique, Tome 346 (2008) no. 9-10, pp. 483-486. doi : 10.1016/j.crma.2008.03.025. https://www.numdam.org/articles/10.1016/j.crma.2008.03.025/
[1] On the modularity of elliptic curves over Q, J. Amer. Math. Soc., Volume 14 (2001), pp. 843-939
[2] On the representation of a large even number as the sum of a prime and the product of at most two primes, Sci. Sinica, Volume 16 (1973), pp. 157-176
[3] Nonvanishing of motivic L-functions, Math. Proc. Cambridge Philos. Soc., Volume 130 (2001), pp. 221-235
[4] On the equation
[5] Conjectures on elliptic curves over quadratic fields, Lecture Notes in Math., vol. 751, Springer-Verlag, 1979, pp. 108-118
[6] Nonvanishing of L-series and the combinatorial sieve, Math. Res. Lett., Volume 4 (1997), pp. 435-444
[7] Almost-primes represented by quadratic polynomials, Invent. Math., Volume 47 (1978), pp. 171-188
[8] The non-vanishing of central values of automorphic L-functions and Landau–Siegel zeros, Israel J. Math., Volume 120 (2000), pp. 155-177
[9] L-series with non-zero central critical value, J. Amer. Math. Soc., Volume 11 (1998), pp. 635-641
[10] On the proportion of quadratic twists of L-functions attached to cusp forms not vanishing at the central point, J. Reine Angew. Math., Volume 508 (1999), pp. 179-187
[11] Finiteness of
[12] Non-vanishing of quadratic twists of modular L-functions, Invent. Math., Volume 34 (1998), pp. 651-660
[13] The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1985
[14] Rank-one twists of a certain elliptic curve, Math. Ann., Volume 311 (1998), pp. 791-794
[15] Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl., Volume 60 (1981), pp. 375-484
- On ranks of quadratic twists of a Mordell curve, The Ramanujan Journal, Volume 59 (2022) no. 1, p. 31 | DOI:10.1007/s11139-022-00585-1
- DENSITY RESULTS FOR SPECIALIZATION SETS OF GALOIS COVERS, Journal of the Institute of Mathematics of Jussieu, Volume 20 (2021) no. 5, p. 1455 | DOI:10.1017/s1474748019000537
- Non-parametric sets of regular realizations over number fields, Journal of Algebra, Volume 497 (2018), p. 302 | DOI:10.1016/j.jalgebra.2017.11.023
- ON POSITIVE PROPORTION OF RANK-ZERO TWISTS OF ELLIPTIC CURVES OVER, Journal of the Australian Mathematical Society, Volume 98 (2015) no. 2, p. 281 | DOI:10.1017/s1446788714000512
- ON TWISTS OF THE FERMAT CUBIC x3 + y3 = 2, International Journal of Number Theory, Volume 10 (2014) no. 01, p. 55 | DOI:10.1142/s1793042113500802
Cité par 5 documents. Sources : Crossref