Soit E une courbe elliptique définie sur Q, la tordue quadratique de E par d, et . On démontre qu'il existe, pour tout entier positif k, des courbes elliptiques , qui sont 2 à 2 non isogènes, et telles que pour une famille de nombres premiers p de densité positive.
Let E be an elliptic curve defined over Q, let denote its dth quadratic twist, and . We prove, that, for any positive integer k there are pairwise non-isogenous elliptic curves such that for a positive proportion of primes p.
Accepté le :
Publié le :
@article{CRMATH_2008__346_9-10_483_0, author = {D\k{a}browski, Andrzej}, title = {On the proportion of rank 0 twists of elliptic curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--486}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.025}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.03.025/} }
TY - JOUR AU - Dąbrowski, Andrzej TI - On the proportion of rank 0 twists of elliptic curves JO - Comptes Rendus. Mathématique PY - 2008 SP - 483 EP - 486 VL - 346 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.03.025/ DO - 10.1016/j.crma.2008.03.025 LA - en ID - CRMATH_2008__346_9-10_483_0 ER -
%0 Journal Article %A Dąbrowski, Andrzej %T On the proportion of rank 0 twists of elliptic curves %J Comptes Rendus. Mathématique %D 2008 %P 483-486 %V 346 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.03.025/ %R 10.1016/j.crma.2008.03.025 %G en %F CRMATH_2008__346_9-10_483_0
Dąbrowski, Andrzej. On the proportion of rank 0 twists of elliptic curves. Comptes Rendus. Mathématique, Tome 346 (2008) no. 9-10, pp. 483-486. doi : 10.1016/j.crma.2008.03.025. http://www.numdam.org/articles/10.1016/j.crma.2008.03.025/
[1] On the modularity of elliptic curves over Q, J. Amer. Math. Soc., Volume 14 (2001), pp. 843-939
[2] On the representation of a large even number as the sum of a prime and the product of at most two primes, Sci. Sinica, Volume 16 (1973), pp. 157-176
[3] Nonvanishing of motivic L-functions, Math. Proc. Cambridge Philos. Soc., Volume 130 (2001), pp. 221-235
[4] On the equation , J. Number Theory, Volume 124 (2007), pp. 364-379
[5] Conjectures on elliptic curves over quadratic fields, Lecture Notes in Math., vol. 751, Springer-Verlag, 1979, pp. 108-118
[6] Nonvanishing of L-series and the combinatorial sieve, Math. Res. Lett., Volume 4 (1997), pp. 435-444
[7] Almost-primes represented by quadratic polynomials, Invent. Math., Volume 47 (1978), pp. 171-188
[8] The non-vanishing of central values of automorphic L-functions and Landau–Siegel zeros, Israel J. Math., Volume 120 (2000), pp. 155-177
[9] L-series with non-zero central critical value, J. Amer. Math. Soc., Volume 11 (1998), pp. 635-641
[10] On the proportion of quadratic twists of L-functions attached to cusp forms not vanishing at the central point, J. Reine Angew. Math., Volume 508 (1999), pp. 179-187
[11] Finiteness of and for a subclass of Weil curves, Izv. Acad. Nauk USSR, Volume 52 (1988), pp. 522-540 (in Russian)
[12] Non-vanishing of quadratic twists of modular L-functions, Invent. Math., Volume 34 (1998), pp. 651-660
[13] The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1985
[14] Rank-one twists of a certain elliptic curve, Math. Ann., Volume 311 (1998), pp. 791-794
[15] Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl., Volume 60 (1981), pp. 375-484
Cité par Sources :