Comme cas très spécial de certaines conjectures générales sur l'intersection d'une variété algébrique avec la réunion des sous-schémas de dimension fixée d'un schéma semi-abélien, nous montrons qu'il n'existe qu'un nombre fini de tels que les quatre points de la courbe elliptique avec et soient d'ordre fini.
We prove that there are at most finitely many complex such that two points on the Legendre elliptic curve with coordinates and both have finite order. This is a very special case of some well-known conjectures on unlikely intersections with varying semiabelian varieties.
Accepté le :
Publié le :
@article{CRMATH_2008__346_9-10_491_0, author = {Masser, David and Zannier, Umberto}, title = {Torsion anomalous points and families of elliptic curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {491--494}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.024}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.03.024/} }
TY - JOUR AU - Masser, David AU - Zannier, Umberto TI - Torsion anomalous points and families of elliptic curves JO - Comptes Rendus. Mathématique PY - 2008 SP - 491 EP - 494 VL - 346 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.03.024/ DO - 10.1016/j.crma.2008.03.024 LA - en ID - CRMATH_2008__346_9-10_491_0 ER -
%0 Journal Article %A Masser, David %A Zannier, Umberto %T Torsion anomalous points and families of elliptic curves %J Comptes Rendus. Mathématique %D 2008 %P 491-494 %V 346 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.03.024/ %R 10.1016/j.crma.2008.03.024 %G en %F CRMATH_2008__346_9-10_491_0
Masser, David; Zannier, Umberto. Torsion anomalous points and families of elliptic curves. Comptes Rendus. Mathématique, Tome 346 (2008) no. 9-10, pp. 491-494. doi : 10.1016/j.crma.2008.03.024. http://www.numdam.org/articles/10.1016/j.crma.2008.03.024/
[1] Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Res. Notices, Volume 20 (1999), pp. 1119-1140
[2] The number of integral points on arcs and ovals, Duke Math. J., Volume 59 (1989), pp. 337-357
[3] Points de petite hauteur sur les courbes elliptiques, J. Number Theory, Volume 64 (1997), pp. 104-129
[4] Elliptic Curves, Springer-Verlag, 1987
[5] Small values of the quadratic part of the Néron–Tate height on an abelian variety, Compositio Math., Volume 53 (1984), pp. 153-170
[6] Specializations of finitely generated subgroups of abelian varieties, Trans. Amer. Math. Soc., Volume 311 (1989), pp. 413-424
[7] Counting points of small height on elliptic curves, Bull. Soc. Math. France, Volume 117 (1989), pp. 247-265
[8] Integer points on the dilation of a subanalytic surface, Quart. J. Math., Volume 55 (2004), pp. 207-223
[9] The rational points of a definable set, Duke Math. J., Volume 33 (2006), pp. 591-616
[10] J. Pila, U. Zannier, Rational points in periodic analytic sets and the Manin–Mumford conjecture, Rend. Lincei Mat. Appl. (RML), in press
[11] R. Pink, A common generalization of the conjectures of André–Oort, Manin–Mumford, and Mordell–Lang, manuscript dated 17th April 2005 (13 pages)
[12] Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math., Volume 342 (1983), pp. 197-211
[13] Exponential sums equations and the Schanuel conjecture, J. London Math. Soc., Volume 65 (2002), pp. 27-44
Cité par Sources :