Dans cette Note, nous trouvons tous les entiers positifs n tels que soit un palindrome binaire. Notre démontration utilise les minorations de formes linéaires en logarithmes de nombres rationnels.
In this Note, we find all positive integers n such that is a binary palindome. Our proof uses lower bounds for linear forms in logarithms of rational numbers.
Accepté le :
Publié le :
@article{CRMATH_2008__346_9-10_487_0, author = {Luca, Florian and Togb\'e, Alain}, title = {On binary palindromes of the form $ {10}^{n}\pm 1$}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--489}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.015}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.03.015/} }
TY - JOUR AU - Luca, Florian AU - Togbé, Alain TI - On binary palindromes of the form $ {10}^{n}\pm 1$ JO - Comptes Rendus. Mathématique PY - 2008 SP - 487 EP - 489 VL - 346 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.03.015/ DO - 10.1016/j.crma.2008.03.015 LA - en ID - CRMATH_2008__346_9-10_487_0 ER -
%0 Journal Article %A Luca, Florian %A Togbé, Alain %T On binary palindromes of the form $ {10}^{n}\pm 1$ %J Comptes Rendus. Mathématique %D 2008 %P 487-489 %V 346 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.03.015/ %R 10.1016/j.crma.2008.03.015 %G en %F CRMATH_2008__346_9-10_487_0
Luca, Florian; Togbé, Alain. On binary palindromes of the form $ {10}^{n}\pm 1$. Comptes Rendus. Mathématique, Tome 346 (2008) no. 9-10, pp. 487-489. doi : 10.1016/j.crma.2008.03.015. http://www.numdam.org/articles/10.1016/j.crma.2008.03.015/
[1] More on palindromic squares, J. Recreational Math., Volume 22 (1990), pp. 133-135
[2] Almost all palindromes are composite, Math. Res. Lett., Volume 11 (2004), pp. 853-868
[3] Prime divisors of palindromes, Period. Math. Hungar., Volume 51 (2005), pp. 1-10
[4] Classification and enumeration of palindromic squares, J. Recreational Math., Volume 22 (1990), pp. 124-132
[5] Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory, Volume 55 (1995), pp. 285-321
[6] Palindromes in Lucas sequences, Monatsh. Math., Volume 138 (2003), pp. 209-223
Cité par Sources :
⁎ Work by the first author was done in the Summer of 2007 when he visited the School of Mathematics of the Tata Institute in Mumbai, India. He thanks the host institution for its hospitality and the Third World Academy of Sciences for support. The second author was partially supported by Purdue University North Central.