Pour les applications exponentielles de dont l'orbite de la valeur singulière 0 est bornée, on montre qu'il n'existe aucune densité intégrable et invariante sous la dynamique.
For exponential mappings such that the orbit of the only singular value 0 is bounded, it is shown that no integrable density invariant under the dynamics exists on .
Accepté le :
Publié le :
@article{CRMATH_2008__346_9-10_559_0, author = {Kotus, Janina and \'Swia̧tek, Grzegorz}, title = {No finite invariant density for {Misiurewicz} exponential maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {559--562}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.03.013/} }
TY - JOUR AU - Kotus, Janina AU - Świa̧tek, Grzegorz TI - No finite invariant density for Misiurewicz exponential maps JO - Comptes Rendus. Mathématique PY - 2008 SP - 559 EP - 562 VL - 346 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.03.013/ DO - 10.1016/j.crma.2008.03.013 LA - en ID - CRMATH_2008__346_9-10_559_0 ER -
%0 Journal Article %A Kotus, Janina %A Świa̧tek, Grzegorz %T No finite invariant density for Misiurewicz exponential maps %J Comptes Rendus. Mathématique %D 2008 %P 559-562 %V 346 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.03.013/ %R 10.1016/j.crma.2008.03.013 %G en %F CRMATH_2008__346_9-10_559_0
Kotus, Janina; Świa̧tek, Grzegorz. No finite invariant density for Misiurewicz exponential maps. Comptes Rendus. Mathématique, Tome 346 (2008) no. 9-10, pp. 559-562. doi : 10.1016/j.crma.2008.03.013. http://www.numdam.org/articles/10.1016/j.crma.2008.03.013/
[1] On the dynamics of entire functions on the Julia set, Result. Math., Volume 30 (1996), pp. 16-20
[2] Non-existence of absolutely continuous invariant probabilities for exponential maps, Fund. Math., Volume 198 (2008), pp. 283-287
[3] Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble), Volume 42 (1992), pp. 989-1020
[4] Non-recurrent meromorphic functions, Fund. Math., Volume 182 (2004), pp. 269-281
[5] Existence of invariant measures for transcendental subexpanding functions, Math. Z., Volume 243 (2003), pp. 25-36
[6] J. Kotus, G. Świa̧tek, Invariant measures for meromorphic Misiurewicz maps, Math. Proc. Cambr. Phil. Soc., in press
Cité par Sources :
⁎ The first author is partially supported by a grant Chaos, fraktale i dynamika konforemna – N N201 0222 33. The second author acknowledges sabbatical support from Penn State University.