Pour les sous-ensembles d'un espace métrique muni d'une application continue, Bowen avait introduit une notion d'entropie. Dans cette Note nous démontrons que l'entropie de Bowen peut être déterminée par les entropies locales de mesures. Ce résultat est un analogue du théorème de Billingsley pour la dimension de Hausdorff.
For subsets of a metric space with a continuous map, Bowen introduced a notion of entropy. In this Note we show that the Bowen entropy can be determined via the local entropies of measures. This result can be considered as an analogue of Billingsley's Theorem for the Hausdorff dimension.
Accepté le :
Publié le :
@article{CRMATH_2008__346_9-10_503_0, author = {Ma, Ji-Hua and Wen, Zhi-Ying}, title = {A {Billingsley} type theorem for {Bowen} entropy}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--507}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.03.010/} }
TY - JOUR AU - Ma, Ji-Hua AU - Wen, Zhi-Ying TI - A Billingsley type theorem for Bowen entropy JO - Comptes Rendus. Mathématique PY - 2008 SP - 503 EP - 507 VL - 346 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.03.010/ DO - 10.1016/j.crma.2008.03.010 LA - en ID - CRMATH_2008__346_9-10_503_0 ER -
%0 Journal Article %A Ma, Ji-Hua %A Wen, Zhi-Ying %T A Billingsley type theorem for Bowen entropy %J Comptes Rendus. Mathématique %D 2008 %P 503-507 %V 346 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.03.010/ %R 10.1016/j.crma.2008.03.010 %G en %F CRMATH_2008__346_9-10_503_0
Ma, Ji-Hua; Wen, Zhi-Ying. A Billingsley type theorem for Bowen entropy. Comptes Rendus. Mathématique, Tome 346 (2008) no. 9-10, pp. 503-507. doi : 10.1016/j.crma.2008.03.010. http://www.numdam.org/articles/10.1016/j.crma.2008.03.010/
[1] Ergodic Theory and Information, John Wiley and Sons Inc., New York, 1965
[2] Topological entropy for noncompact sets, Trans. Amer. Math. Soc., Volume 184 (1973), pp. 125-136
[3] On local entropy, Geometric Dynamics, Lecture Notes in Mathematics, vol. 1007, Springer, Berlin, 1983, pp. 30-38
[4] Geometric Measure Theory, Springer-Verlag, New York, 1969
[5] Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995
[6] Dimension Theory in Dynamical Systems: Contemporary Views and Applications, The University of Chicago Press, Chicago and London, 1997
[7] On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 929-956
Cité par Sources :