On établit l'existence de solutions faibles globales en temps pour les équations des fluides incompressibles asymétriques à densité variable, dans le cas oú la densité initiale n'est pas strictement positive.
We establish the existence of global in time weak solutions for the equations of asymmetric incompressible fluids with variable density, when the initial density is not necessarily strictly positive.
Accepté le :
Publié le :
@article{CRMATH_2008__346_9-10_575_0, author = {Braz e Silva, Pablo and Santos, Eduardo G.}, title = {Global weak solutions for asymmetric incompressible fluids with variable density}, journal = {Comptes Rendus. Math\'ematique}, pages = {575--578}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.03.008/} }
TY - JOUR AU - Braz e Silva, Pablo AU - Santos, Eduardo G. TI - Global weak solutions for asymmetric incompressible fluids with variable density JO - Comptes Rendus. Mathématique PY - 2008 SP - 575 EP - 578 VL - 346 IS - 9-10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.03.008/ DO - 10.1016/j.crma.2008.03.008 LA - en ID - CRMATH_2008__346_9-10_575_0 ER -
%0 Journal Article %A Braz e Silva, Pablo %A Santos, Eduardo G. %T Global weak solutions for asymmetric incompressible fluids with variable density %J Comptes Rendus. Mathématique %D 2008 %P 575-578 %V 346 %N 9-10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.03.008/ %R 10.1016/j.crma.2008.03.008 %G en %F CRMATH_2008__346_9-10_575_0
Braz e Silva, Pablo; Santos, Eduardo G. Global weak solutions for asymmetric incompressible fluids with variable density. Comptes Rendus. Mathématique, Tome 346 (2008) no. 9-10, pp. 575-578. doi : 10.1016/j.crma.2008.03.008. http://www.numdam.org/articles/10.1016/j.crma.2008.03.008/
[1] On steady and pulsatile flow of blood, J. Appl. Mech., Volume 41 (1974), pp. 1-7
[2] Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids, J. Math. Pures Appl., Volume 82 (2003) no. 11, pp. 1499-1525
[3] Fluid mechanical aspects of antisymmetric stress, Phys. Fluids, Volume 7 (1964), pp. 842-854
[4] On lubrication with structured fluids, Appl. Anal., Volume 15 (1983), pp. 127-146
[5] On nonstationary flows of incompressible asymmetric fluids, Math. Methods Appl. Sci., Volume 13 (1990) no. 3, pp. 219-232
[6] Micropolar Fluids. Theory and Applications, Modelling and Simulation in Science, Engineering & Technology, Birkhäuser Boston, Inc., Boston, MA, 1999
[7] Lubrication theory for micropolar fluids and its application to a journal bearing, Int. J. Engrg. Sci., Volume 13 (1975) no. 3, pp. 217-323
[8] J. Simon, Existencia de solución del problema de Navier–Stokes con densidad variable, Existence of solution for the variable density Navier–Stokes problem, Lecture notes at the University of Sevilla, Spain (in Spanish)
[9] Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal., Volume 21 (1990) no. 5, pp. 1093-1117
[10] Compact sets in the space , Ann. Mat. Pura Appl., Volume 4 (1987) no. 146, pp. 65-96
[11] Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983
Cité par Sources :