Numerical Analysis
A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization
[Estimation d'erreur a posteriori dans la méthode des éléments finis conformes basée sur sa conservativité locale et employant une minimisation locale]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 11-12, pp. 687-690.

Nous présentons dans cette Note des estimations a posteriori entièrement calculables, permettant le contrôle d'erreur dans la discrétisation de problèmes à diffusion pure par la méthode des éléments finis conformes. Ces estimations sont basées sur la conservativité locale de la méthode des éléments finis conformes sur un maillage dual associé aux sommets des triangles ou tétraèdres au lieu de l'orthogonalité de Galerkine.

We present in this Note fully computable a posteriori error estimates allowing for accurate error control in the conforming finite element discretization of pure diffusion problems. The derived estimates are based on the local conservativity of the conforming finite element method on a dual grid associated with simplex vertices rather than directly on the Galerkin orthogonality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.03.006
Vohralík, Martin 1, 2

1 UPMC Université Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France
2 CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France
@article{CRMATH_2008__346_11-12_687_0,
     author = {Vohral{\'\i}k, Martin},
     title = {A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {687--690},
     publisher = {Elsevier},
     volume = {346},
     number = {11-12},
     year = {2008},
     doi = {10.1016/j.crma.2008.03.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.03.006/}
}
TY  - JOUR
AU  - Vohralík, Martin
TI  - A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 687
EP  - 690
VL  - 346
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.03.006/
DO  - 10.1016/j.crma.2008.03.006
LA  - en
ID  - CRMATH_2008__346_11-12_687_0
ER  - 
%0 Journal Article
%A Vohralík, Martin
%T A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization
%J Comptes Rendus. Mathématique
%D 2008
%P 687-690
%V 346
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.03.006/
%R 10.1016/j.crma.2008.03.006
%G en
%F CRMATH_2008__346_11-12_687_0
Vohralík, Martin. A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization. Comptes Rendus. Mathématique, Tome 346 (2008) no. 11-12, pp. 687-690. doi : 10.1016/j.crma.2008.03.006. http://www.numdam.org/articles/10.1016/j.crma.2008.03.006/

[1] Bank, R.E.; Rose, D.J. Some error estimates for the box method, SIAM J. Numer. Anal., Volume 24 (1987) no. 4, pp. 777-787

[2] I. Cheddadi, R. Fučík, M.I. Prieto, M. Vohralík, Computable a posteriori error estimates in the finite element method based on its local conservativity: improvements using local minimization, (2008), submitted for publication

[3] I. Cheddadi, R. Fučík, M.I. Prieto, M. Vohralík, Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems, (2008), submitted for publication

[4] Destuynder, P.; Métivet, B. Explicit error bounds in a conforming finite element method, Math. Comp., Volume 68 (1999) no. 228, pp. 1379-1396

[5] A. Ern, A.F. Stephansen, M. Vohralík, Improved energy norm a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods, (2007), submitted for publication

[6] Luce, R.; Wohlmuth, B.I. A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal., Volume 42 (2004) no. 4, pp. 1394-1414

[7] Repin, S.; Sauter, S. Functional a posteriori estimates for the reaction–diffusion problem, C. R. Math. Acad. Sci. Paris, Volume 343 (2006) no. 5, pp. 349-354

[8] M. Vohralík, Residual flux-based a posteriori error estimates for finite volume discretizations of inhomogeneous, anisotropic, and convection-dominated problems, (2006), submitted for publication

[9] Vohralík, M. A posteriori error estimates for lowest-order mixed finite element discretizations of convection–diffusion–reaction equations, SIAM J. Numer. Anal., Volume 45 (2007) no. 4, pp. 1570-1599

[10] M. Vohralík, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, (2008), submitted for publication

Cité par Sources :

This work was supported by the GdR MoMaS project “Numerical Simulations and Mathematical Modeling of Underground Nuclear Waste Disposal”, PACEN/CNRS, ANDRA, BRGM, CEA, EdF, IRSN.