Homological Algebra
Hopf type formulas for cyclic homology
[Formules de type Hopf pour l'homologie cyclique]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 7-8, pp. 385-390.

On inscrit l'homologie cyclique des algèbres associatives dans le cadre de l'homologie cotriple de Barr et Beck. En conséquence, on décrit l'homologie cyclique des algèbres associatives au moyen des formules de Hopf généralisées. Cette Note fait partie d'un projet commun avec Donadze sur les foncteurs dérivés en (co)homologie cyclique.

We fit the cyclic homology of associative algebras into the context of cotriple homology of Barr and Beck. Consequently, we describe the cyclic homology of associative algebras in terms of the generalised Hopf type formulas. This Note is part of a joint project with Donadze about derived functors in cyclic (co)homology.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.02.025
Inassaridze, Nick 1, 2 ; Ladra, Manuel 3

1 A. Razmadze Mathematical Institute, M.Alexidze St. 1, 0193 Tbilisi, Georgia
2 National Center for Science and Technology, Georgia
3 Departamento de Álgebra, Facultad de Matemáticas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
@article{CRMATH_2008__346_7-8_385_0,
     author = {Inassaridze, Nick and Ladra, Manuel},
     title = {Hopf type formulas for cyclic homology},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {385--390},
     publisher = {Elsevier},
     volume = {346},
     number = {7-8},
     year = {2008},
     doi = {10.1016/j.crma.2008.02.025},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.02.025/}
}
TY  - JOUR
AU  - Inassaridze, Nick
AU  - Ladra, Manuel
TI  - Hopf type formulas for cyclic homology
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 385
EP  - 390
VL  - 346
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.02.025/
DO  - 10.1016/j.crma.2008.02.025
LA  - en
ID  - CRMATH_2008__346_7-8_385_0
ER  - 
%0 Journal Article
%A Inassaridze, Nick
%A Ladra, Manuel
%T Hopf type formulas for cyclic homology
%J Comptes Rendus. Mathématique
%D 2008
%P 385-390
%V 346
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.02.025/
%R 10.1016/j.crma.2008.02.025
%G en
%F CRMATH_2008__346_7-8_385_0
Inassaridze, Nick; Ladra, Manuel. Hopf type formulas for cyclic homology. Comptes Rendus. Mathématique, Tome 346 (2008) no. 7-8, pp. 385-390. doi : 10.1016/j.crma.2008.02.025. http://www.numdam.org/articles/10.1016/j.crma.2008.02.025/

[1] Barr, M. Shukla cohomology and triples, J. Algebra, Volume 5 (1967), pp. 222-231

[2] Barr, M. Cartan–Eilenberg cohomology and triples, J. Pure Appl. Algebra, Volume 112 (1996), pp. 219-238

[3] Barr, M.; Beck, J. Homology and standard constructions (Eckmann, B., ed.), Seminar on Triples and Categorical Homology Theory, Lecture Notes in Math., vol. 80, Springer-Verlag, Berlin/New York, 1969, pp. 245-335

[4] Brown, R.; Ellis, G.J. Hopf formulae for the higher homology of a group, Bull. London Math. Soc., Volume 20 (1988), pp. 124-128

[5] Donadze, G.; Inassaridze, N.; Porter, T. N-fold Čech derived functors and generalised Hopf type formulas, K-Theory, Volume 35 (2005), pp. 341-373

[6] Duskin, J. Simplicial methods and the interpretation of “triple” cohomology, Mem. Amer. Math. Soc., Volume 163 (1975)

[7] Inassaridze, H. Non-Abelian Homological Algebra and its Applications, Kluwer Academic Publishers, Dordrecht, 1997

[8] Inassaridze, N. N-fold Čech derived functors of group valued functors, Bull. Georgian Acad. Sci., Volume 168 (2003) no. 2

[9] Keune, F. Derived functors and algebraic K-theory (Bass, H., ed.), Algebraic K-Theory I. Higher K-Theories, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 166-176

[10] Loday, J.-L.; Quillen, D. Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv., Volume 59 (1984) no. 4, pp. 569-591

[11] Quillen, D. Cyclic cohomology and algebra extensions, K-Theory, Volume 3 (1989), pp. 205-246

[12] Swan, R.G. Some relations between higher K-functors, J. Algebra, Volume 21 (1972), pp. 113-136

Cité par Sources :