On donne une variante de la preuve du théorème de Y.-T. Siu sur la non-existence d'hypersurface réelle Levi-plate de classe Sobolev , , dans , .
We give a variant of the proof of Y.-T. Siu's theorem concerning the non-existence of Levi-flat real hypersurface of Sobolev class , , in , .
Accepté le :
Publié le :
@article{CRMATH_2008__346_7-8_395_0, author = {Iordan, Andrei and Matthey, Fanny}, title = {R\'egularit\'e de l'op\'erateur $ \overline{\partial }$ et th\'eor\`eme de {Siu} sur la non-existence d'hypersurfaces {Levi-plates} dans l'espace projectif complexe $ {\mathbb{CP}}_{n}$, $ n\ensuremath{\geqslant}3$}, journal = {Comptes Rendus. Math\'ematique}, pages = {395--400}, publisher = {Elsevier}, volume = {346}, number = {7-8}, year = {2008}, doi = {10.1016/j.crma.2008.02.024}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.02.024/} }
TY - JOUR AU - Iordan, Andrei AU - Matthey, Fanny TI - Régularité de l'opérateur $ \overline{\partial }$ et théorème de Siu sur la non-existence d'hypersurfaces Levi-plates dans l'espace projectif complexe $ {\mathbb{CP}}_{n}$, $ n⩾3$ JO - Comptes Rendus. Mathématique PY - 2008 SP - 395 EP - 400 VL - 346 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.02.024/ DO - 10.1016/j.crma.2008.02.024 LA - fr ID - CRMATH_2008__346_7-8_395_0 ER -
%0 Journal Article %A Iordan, Andrei %A Matthey, Fanny %T Régularité de l'opérateur $ \overline{\partial }$ et théorème de Siu sur la non-existence d'hypersurfaces Levi-plates dans l'espace projectif complexe $ {\mathbb{CP}}_{n}$, $ n⩾3$ %J Comptes Rendus. Mathématique %D 2008 %P 395-400 %V 346 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.02.024/ %R 10.1016/j.crma.2008.02.024 %G fr %F CRMATH_2008__346_7-8_395_0
Iordan, Andrei; Matthey, Fanny. Régularité de l'opérateur $ \overline{\partial }$ et théorème de Siu sur la non-existence d'hypersurfaces Levi-plates dans l'espace projectif complexe $ {\mathbb{CP}}_{n}$, $ n⩾3$. Comptes Rendus. Mathématique, Tome 346 (2008) no. 7-8, pp. 395-400. doi : 10.1016/j.crma.2008.02.024. http://www.numdam.org/articles/10.1016/j.crma.2008.02.024/
[1] M. Brunella, On the dynamics of codimension one holomorphic foliations with ample normal bundle, preprint, | arXiv
[2] M. Brunella, Siu's theorem on the nonexistence of Levi-flat hypersurfaces in the complex projective plane, preprint, 2005
[3] Estimates for the -Neumann problem and nonexistence of Levi-flat hypersurfaces in , Math. Z., Volume 248 (2004), pp. 183-221 (Erratum Math. Z., 248, 2004, pp. 223-225)
[4] The -Cauchy problem and the nonexistence of Lipschitz Levi-flat hypersurfaces in , , Math. Z., Volume 256 (2007) no. 1, pp. 175-192
[5] Minimaux des feuilletages algébriques de , Ann. Inst. Fourier, Volume 43 (1993), pp. 1535-1543
[6] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983
[7] Regularity of on pseudoconcave compacts and applications, Asian J. Math., Volume 4 (2000), pp. 855-884 (Erratum Asian J. Math., 7, 2003, pp. 147-148)
[8] Homotopy formulas for -operator on and the Radon–Penrose transform, Math. USSR Izv., Volume 28 (1987) no. 3, pp. 555-587
[9] Linear Partial Differential Operators, Springer-Verlag, 1963
[10] On the non-existence of smooth Levi-flat hypersurfaces in , Kyoto, Nara, 2001 (Advanced Studies in Pures Mathematics), Volume vol. 42 (2004), pp. 123-126
[11] The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., Volume 130 (1995), pp. 161-219
[12] A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier, Volume 49 (1999), pp. 1369-1385
[13] On the real analytic Levi flat hypersurfaces in complex tori of dimension two, Ann. Inst. Fourier, Volume 52 (2002) no. 5, pp. 1525-1532
[14] F. Matthey, Non-existence of Lipschitz–regular Levi-flat hypersurfaces in , preprint, 2006
[15] Nonexistence of real analytic Levi flat hypersurfaces in , Nagoya Math. J., Volume 158 (2000), pp. 95-98
[16] Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension ⩾3, Ann. of Math., Volume 151 (2000), pp. 1217-1243
[17] Regularity for weakly pseudoconvex domains in compact Hermitian symmetric spaces with respect to invariant metrics, Ann. of Math., Volume 156 (2002), pp. 595-621
[18] Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan, Volume 16 (1964), pp. 159-181
[19] Idéaux de fonctions différentiables, Springer-Verlag, 1972
Cité par Sources :