Cette Note présente un estimateur de la loi de l'erreur dans un modèle de régression homoscédastique, basé sur des techniques de sélection de modèle, et propose une majoration du risque quadratique intégré.
This Note presents an estimator of the density of the error in a homoscedastic regression model, based on model selection methods, and propose a bound for the quadratic integrated risk.
Accepté le :
Publié le :
@article{CRMATH_2008__346_7-8_461_0, author = {Plancade, Sandra}, title = {Nonparametric estimation of the density of the regression noise}, journal = {Comptes Rendus. Math\'ematique}, pages = {461--466}, publisher = {Elsevier}, volume = {346}, number = {7-8}, year = {2008}, doi = {10.1016/j.crma.2008.02.021}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.02.021/} }
TY - JOUR AU - Plancade, Sandra TI - Nonparametric estimation of the density of the regression noise JO - Comptes Rendus. Mathématique PY - 2008 SP - 461 EP - 466 VL - 346 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.02.021/ DO - 10.1016/j.crma.2008.02.021 LA - en ID - CRMATH_2008__346_7-8_461_0 ER -
%0 Journal Article %A Plancade, Sandra %T Nonparametric estimation of the density of the regression noise %J Comptes Rendus. Mathématique %D 2008 %P 461-466 %V 346 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.02.021/ %R 10.1016/j.crma.2008.02.021 %G en %F CRMATH_2008__346_7-8_461_0
Plancade, Sandra. Nonparametric estimation of the density of the regression noise. Comptes Rendus. Mathématique, Tome 346 (2008) no. 7-8, pp. 461-466. doi : 10.1016/j.crma.2008.02.021. http://www.numdam.org/articles/10.1016/j.crma.2008.02.021/
[1] Model selection for regression on a random design, ESAIM Probab. Statist., Volume 6 (2002), pp. 127-146
[2] Model selection for regression on a fixed design, Probab. Theory Related Fields, Volume 117 (2000), pp. 467-493
[3] Constructive Approximation, Springer-Verlag, 1993
[4] Estimation of the density of regression errors, Annals of Statistics, Volume 33 (2005), pp. 2194-2227
[5] Wavelets, Approximation, and Statistical Applications, Lecture Notes in Statistics, vol. 129, 1998
[6] C. Lacour, Adaptative estimation of the transition density of a particular hidden Markov chain, J. Multivariate Anal. 2006, in press, available online; arXiv: math/0611681v1 [math.ST], hal-00115612, version 1
[7] Concentration inequalities and model selection, July 6–23, 2003 (Lecture Notes in Mathematics), Volume vol. 1896 (2007)
Cité par Sources :