On établit des conditions suffisantes pour l'existence des solutions non triviales pour une classe de problèmes aux limites de Neumann avec des opérateurs différentiels non homogènes.
We establish sufficient conditions for the existence of nontrivial solutions for a class of nonlinear Neumann boundary value problems involving nonhomogeneous differential operators.
Accepté le :
Publié le :
@article{CRMATH_2008__346_7-8_401_0, author = {Mih\u{a}ilescu, Mihai and R\u{a}dulescu, Vicen\c{t}iu}, title = {Nonhomogeneous {Neumann} problems in {Orlicz{\textendash}Sobolev} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {401--406}, publisher = {Elsevier}, volume = {346}, number = {7-8}, year = {2008}, doi = {10.1016/j.crma.2008.02.020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.02.020/} }
TY - JOUR AU - Mihăilescu, Mihai AU - Rădulescu, Vicenţiu TI - Nonhomogeneous Neumann problems in Orlicz–Sobolev spaces JO - Comptes Rendus. Mathématique PY - 2008 SP - 401 EP - 406 VL - 346 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.02.020/ DO - 10.1016/j.crma.2008.02.020 LA - en ID - CRMATH_2008__346_7-8_401_0 ER -
%0 Journal Article %A Mihăilescu, Mihai %A Rădulescu, Vicenţiu %T Nonhomogeneous Neumann problems in Orlicz–Sobolev spaces %J Comptes Rendus. Mathématique %D 2008 %P 401-406 %V 346 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.02.020/ %R 10.1016/j.crma.2008.02.020 %G en %F CRMATH_2008__346_7-8_401_0
Mihăilescu, Mihai; Rădulescu, Vicenţiu. Nonhomogeneous Neumann problems in Orlicz–Sobolev spaces. Comptes Rendus. Mathématique, Tome 346 (2008) no. 7-8, pp. 401-406. doi : 10.1016/j.crma.2008.02.020. http://www.numdam.org/articles/10.1016/j.crma.2008.02.020/
[1] Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math., Volume 66 (2006) no. 4, pp. 1383-1406
[2] Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., Volume 129 (2005), pp. 657-700
[3] Electrorheological fluids, Science, Volume 258 (1992), pp. 761-766
[4] Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 561-566
[5] A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Roy. Soc. A: Math. Phys. Eng. Sci., Volume 462 (2006), pp. 2625-2641
[6] On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 2929-2937
[7] Continuous spectrum for a class of nonhomogeneous differential operators, Manuscripta Math., Volume 125 (2008), pp. 157-167
[8] M. Mihăilescu, V. Rădulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces, Ann. Inst. Fourier, in press
[9] Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer, Berlin, 1983
[10] On modular spaces, Studia Math., Volume 18 (1959), pp. 49-65
[11] Modulared Semi-ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950
[12] Mathematical modelling of electrorheological fluids, Cont. Mech. Term., Volume 13 (2001), pp. 59-78
[13] Electrorheological Fluids Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002
[14] Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Heidelberg, 1996
Cité par Sources :