Probability Theory
A uniqueness theorem for the solution of Backward Stochastic Differential Equations
[Un théorême d'unicité de la solution d'une équation différentielle stochastique rétrograde]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 7-8, pp. 439-444.

Dans cette Note, nous démontrons que pour une fonction g donnée, uniformément continue en z, uniformément en (ω,t) et indépendante de y l'équation différentielle stochastique, rétrograde de générateur g, admet une solution unique.

In this Note, we prove that if g is uniformly continuous in z, uniformly with respect to (ω,t) and independent of y, the solution to the backward stochastic differential equation (BSDE) with generator g, is unique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.02.012
Jia, Guangyan 1

1 School of Mathematics and System Sciences, Shandong University, Jinan, Shandong 250100, PR China
@article{CRMATH_2008__346_7-8_439_0,
     author = {Jia, Guangyan},
     title = {A uniqueness theorem for the solution of {Backward} {Stochastic} {Differential} {Equations}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {439--444},
     publisher = {Elsevier},
     volume = {346},
     number = {7-8},
     year = {2008},
     doi = {10.1016/j.crma.2008.02.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.02.012/}
}
TY  - JOUR
AU  - Jia, Guangyan
TI  - A uniqueness theorem for the solution of Backward Stochastic Differential Equations
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 439
EP  - 444
VL  - 346
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.02.012/
DO  - 10.1016/j.crma.2008.02.012
LA  - en
ID  - CRMATH_2008__346_7-8_439_0
ER  - 
%0 Journal Article
%A Jia, Guangyan
%T A uniqueness theorem for the solution of Backward Stochastic Differential Equations
%J Comptes Rendus. Mathématique
%D 2008
%P 439-444
%V 346
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.02.012/
%R 10.1016/j.crma.2008.02.012
%G en
%F CRMATH_2008__346_7-8_439_0
Jia, Guangyan. A uniqueness theorem for the solution of Backward Stochastic Differential Equations. Comptes Rendus. Mathématique, Tome 346 (2008) no. 7-8, pp. 439-444. doi : 10.1016/j.crma.2008.02.012. http://www.numdam.org/articles/10.1016/j.crma.2008.02.012/

[1] Briand, P.; Hu, Y. Quadratic BSDEs with convex generators and unbounded terminal conditions, 2007 (available in arXiv:) | arXiv

[2] Coquet, F.; Hu, Y.; Mémin, J.; Peng, S. Filtration consistent nonlinear expectations and related g-expectations, Probab. Theory Related Fields, Volume 123 (2002), pp. 1-27

[3] Crandall, M.G. Viscosity solutions—a primer (Capuzzo Dolcetta, I.; Lions, P.L., eds.), Viscosity Solutions and Applications, Lecture Notes in Mathematics, vol. 1660, Springer, Berlin, 1997, pp. 1-43

[4] Kobylanski, M. Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., Volume 28 (2000), pp. 259-276

[5] Lepeltier, J.P.; San Martin, J. Backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett., Volume 32 (1997) no. 4, pp. 425-430

[6] Pardoux, E. Backward stochastic differential equations and viscosity solutions of system of semilinear parabolic and elliptic PDEs of second order, Stochastic Analysis and Related Topics, VI, Birkhäuser, 1996, pp. 79-128

[7] Pardoux, E.; Peng, S. Adapted solutions of a backward stochastic differential equations, System Control Lett., Volume 14 (1990) no. 1, pp. 55-61

[8] E. Pardoux, S. Peng, Some backward SDEs with non-Lipschitz, coefficients, Prepublication URA 225, 94-3, Universite de Provence

Cité par Sources :