Dans cette Note, nous démontrons que pour une fonction g donnée, uniformément continue en z, uniformément en et indépendante de y l'équation différentielle stochastique, rétrograde de générateur g, admet une solution unique.
In this Note, we prove that if g is uniformly continuous in z, uniformly with respect to and independent of y, the solution to the backward stochastic differential equation (BSDE) with generator g, is unique.
Accepté le :
Publié le :
@article{CRMATH_2008__346_7-8_439_0, author = {Jia, Guangyan}, title = {A uniqueness theorem for the solution of {Backward} {Stochastic} {Differential} {Equations}}, journal = {Comptes Rendus. Math\'ematique}, pages = {439--444}, publisher = {Elsevier}, volume = {346}, number = {7-8}, year = {2008}, doi = {10.1016/j.crma.2008.02.012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.02.012/} }
TY - JOUR AU - Jia, Guangyan TI - A uniqueness theorem for the solution of Backward Stochastic Differential Equations JO - Comptes Rendus. Mathématique PY - 2008 SP - 439 EP - 444 VL - 346 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.02.012/ DO - 10.1016/j.crma.2008.02.012 LA - en ID - CRMATH_2008__346_7-8_439_0 ER -
%0 Journal Article %A Jia, Guangyan %T A uniqueness theorem for the solution of Backward Stochastic Differential Equations %J Comptes Rendus. Mathématique %D 2008 %P 439-444 %V 346 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.02.012/ %R 10.1016/j.crma.2008.02.012 %G en %F CRMATH_2008__346_7-8_439_0
Jia, Guangyan. A uniqueness theorem for the solution of Backward Stochastic Differential Equations. Comptes Rendus. Mathématique, Tome 346 (2008) no. 7-8, pp. 439-444. doi : 10.1016/j.crma.2008.02.012. http://www.numdam.org/articles/10.1016/j.crma.2008.02.012/
[1] Quadratic BSDEs with convex generators and unbounded terminal conditions, 2007 (available in arXiv:) | arXiv
[2] Filtration consistent nonlinear expectations and related g-expectations, Probab. Theory Related Fields, Volume 123 (2002), pp. 1-27
[3] Viscosity solutions—a primer (Capuzzo Dolcetta, I.; Lions, P.L., eds.), Viscosity Solutions and Applications, Lecture Notes in Mathematics, vol. 1660, Springer, Berlin, 1997, pp. 1-43
[4] Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., Volume 28 (2000), pp. 259-276
[5] Backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett., Volume 32 (1997) no. 4, pp. 425-430
[6] Backward stochastic differential equations and viscosity solutions of system of semilinear parabolic and elliptic PDEs of second order, Stochastic Analysis and Related Topics, VI, Birkhäuser, 1996, pp. 79-128
[7] Adapted solutions of a backward stochastic differential equations, System Control Lett., Volume 14 (1990) no. 1, pp. 55-61
[8] E. Pardoux, S. Peng, Some backward SDEs with non-Lipschitz, coefficients, Prepublication URA 225, 94-3, Universite de Provence
Cité par Sources :