Statistics
Change-point detection for continuous processes with high-frequency sampling
[Détection de rupture pour des processus continus avec un échantillonnage à haute fréquence]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 7-8, pp. 467-470.

Nous considérons la détection de saut dans un processus en temps continu sur un intervalle de temps fini et fixé. On cherche à localiser dans le temps la position de rupture via des observations discrètes. Nous étudions l'effet de croissance de la fréquence d'échantillonnage sur la précision de l'estimation. Nous montrons que la procédure classique avec les estimateurs à sommes cumulatives échoue et nous proposons une alternative basée sur une localisation de l'information. Nous prouvons que le nouvel estimateur converge avec une vitesse exponentielle.

We consider the detection of a jump in a continuous process over a fixed time interval. We aim to locate the jump position via discrete observations and consider how increasing the frequency of the observations affects the accuracy of the detection process. We show that the classical cumulative-sum estimator fails, and propose a new estimator based on local information that we prove converges exponentially fast.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.02.005
Wang, Guangming 1 ; Ben Hariz, Samir 2 ; Wylie, Jonathan J. 3 ; Zhang, Qiang 3

1 School of Mathematics and Statistics, Wuhan University, Hubei, 430072, People's Republic of China
2 Laboratoire de statistique et processus, département de mathématiques, université du Maine, avenue Olivier-Messiaen, 72085 Le Mans cedex 9, France
3 Department of Mathematics, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
@article{CRMATH_2008__346_7-8_467_0,
     author = {Wang, Guangming and Ben Hariz, Samir and Wylie, Jonathan J. and Zhang, Qiang},
     title = {Change-point detection for continuous processes with high-frequency sampling},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {467--470},
     publisher = {Elsevier},
     volume = {346},
     number = {7-8},
     year = {2008},
     doi = {10.1016/j.crma.2008.02.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.02.005/}
}
TY  - JOUR
AU  - Wang, Guangming
AU  - Ben Hariz, Samir
AU  - Wylie, Jonathan J.
AU  - Zhang, Qiang
TI  - Change-point detection for continuous processes with high-frequency sampling
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 467
EP  - 470
VL  - 346
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.02.005/
DO  - 10.1016/j.crma.2008.02.005
LA  - en
ID  - CRMATH_2008__346_7-8_467_0
ER  - 
%0 Journal Article
%A Wang, Guangming
%A Ben Hariz, Samir
%A Wylie, Jonathan J.
%A Zhang, Qiang
%T Change-point detection for continuous processes with high-frequency sampling
%J Comptes Rendus. Mathématique
%D 2008
%P 467-470
%V 346
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.02.005/
%R 10.1016/j.crma.2008.02.005
%G en
%F CRMATH_2008__346_7-8_467_0
Wang, Guangming; Ben Hariz, Samir; Wylie, Jonathan J.; Zhang, Qiang. Change-point detection for continuous processes with high-frequency sampling. Comptes Rendus. Mathématique, Tome 346 (2008) no. 7-8, pp. 467-470. doi : 10.1016/j.crma.2008.02.005. http://www.numdam.org/articles/10.1016/j.crma.2008.02.005/

[1] Basseville, M.; Nikiforov, I.V. Detection of Abrupt Changes: Theory and Application, Prentice-Hall, Englewood Cliffs, NJ, 1993

[2] S. Ben Hariz, G.M. Wang, J.J. Wylie, Q. Zhang, Jump detection for discretely observed continuous processes, Preprint, 2007

[3] Ben Hariz, S.; Wylie, J.J.; Zhang, Q. Optimal rate of convergence for nonparametric change-point estimators for non-stationary sequences, Ann. Statist., Volume 35 (2007), pp. 1802-1826

[4] Carlstein, E. Nonparametric change-point estimation, Ann. Statist., Volume 16 (1988), pp. 188-197

[5] Dumbgen, L. The asymptotic behavior of some nonparametric change-point estimators, Ann. Statist., Volume 19 (1991), pp. 1471-1495

[6] Nikiforov, I.V. A generalized change detection problem, IEEE Trans. Inform. Theory, Volume 41 (1995) no. 1, pp. 171-187

[7] Nikiforov, I.V. Two strategies in the problem of change detection and isolation, IEEE Trans. Inform. Theory, Volume 43 (1997) no. 2, pp. 770-776

[8] Wang, Y. Jump and sharp cusp detection by wavelets, Biometrika, Volume 82 (1995) no. 2, pp. 385-397

[9] Wong, H.; Ip, W.; Li, Y. Detection of jumps by wavelets in a heteroscedastic autoregressive model, Statist. Probab. Lett., Volume 52 (2001) no. 4, pp. 365-372

Cité par Sources :