Le gaz de Lorentz périodique est le système dynamique correspondant au mouvement libre dans le plan d'une particule ponctuelle rebondissant de manière élastique sur un système de disques de rayon r centrés aux points de coordonnées entières. On étudie ce mouvement pour sur des temps de l'ordre de .
The periodic Lorentz gas is the dynamical system corresponding to the free motion of a point particle in a periodic system of fixed spherical obstacles of radius r centered at the integer points of the Euclidian plane, assuming all collisions of the particle with the obstacles to be elastic. In this Note, we study this motion on time intervals of order as .
Accepté le :
Publié le :
@article{CRMATH_2008__346_7-8_477_0, author = {Caglioti, Emanuele and Golse, Fran\c{c}ois}, title = {The {Boltzmann{\textendash}Grad} limit of the periodic {Lorentz} gas in two space dimensions}, journal = {Comptes Rendus. Math\'ematique}, pages = {477--482}, publisher = {Elsevier}, volume = {346}, number = {7-8}, year = {2008}, doi = {10.1016/j.crma.2008.01.016}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.01.016/} }
TY - JOUR AU - Caglioti, Emanuele AU - Golse, François TI - The Boltzmann–Grad limit of the periodic Lorentz gas in two space dimensions JO - Comptes Rendus. Mathématique PY - 2008 SP - 477 EP - 482 VL - 346 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.01.016/ DO - 10.1016/j.crma.2008.01.016 LA - en ID - CRMATH_2008__346_7-8_477_0 ER -
%0 Journal Article %A Caglioti, Emanuele %A Golse, François %T The Boltzmann–Grad limit of the periodic Lorentz gas in two space dimensions %J Comptes Rendus. Mathématique %D 2008 %P 477-482 %V 346 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.01.016/ %R 10.1016/j.crma.2008.01.016 %G en %F CRMATH_2008__346_7-8_477_0
Caglioti, Emanuele; Golse, François. The Boltzmann–Grad limit of the periodic Lorentz gas in two space dimensions. Comptes Rendus. Mathématique, Tome 346 (2008) no. 7-8, pp. 477-482. doi : 10.1016/j.crma.2008.01.016. http://www.numdam.org/articles/10.1016/j.crma.2008.01.016/
[1] Thom's problem on irrational flows, Internat. J. Math., Volume 4 (1993), pp. 721-726
[2] The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit, Commun. Math. Phys., Volume 269 (2007), pp. 425-471
[3] On the distribution of free path lengths for the periodic Lorentz gas, Commun. Math. Phys., Volume 190 (1998), pp. 491-508
[4] On the distribution of free path lengths for the periodic Lorentz gas III, Commun. Math. Phys., Volume 236 (2003), pp. 199-221
[5] G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas, Preprint mp_arc 93-304, 1972
[6] F. Golse, The periodic Lorentz Gas in the Boltzmann–Grad Limit (joint work with J. Bourgain, E. Caglioti, B. Wennberg), Report 54/2006, p. 3214, Oberwolfach Reports, vol. 3, European Math. Soc. Publishing House, 2006
[7] F. Golse, On the periodic Lorentz gas and the Lorentz kinetic equation, Ann. Fac. Sci. Toulouse, in press
[8] On the distribution of free path lengths for the periodic Lorentz gas II, M2AN Modél. Math. Anal. Numér., Volume 34 (2000), pp. 1151-1163
[9] The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems (Preprint, arXiv:) | arXiv
[10] J. Marklof, A. Strömbergson, The Boltzmann–Grad limit of the periodic Lorentz gas, Preprint, arXiv: | arXiv
Cité par Sources :