Dans cette Note, nous présentons et analysons une nouvelle méthode d'approximation de problèmes d'élasticité linéaire en dimension deux ou trois. Cette approche fournit directement des approximations des déformations, c'est-à-dire sans approcher simultanément les déplacements, dans des espaces d'éléments finis où les conditions de compatibilité de Saint Venant sont exactement satisfaites dans un sens faible.
In this Note, we present and analyze a new method for approximating linear elasticity problems in dimension two or three. This approach directly provides approximate strains, i.e., without simultaneously approximating the displacements, in finite element spaces where the Saint Venant compatibility conditions are exactly satisfied in a weak form.
Publié le :
@article{CRMATH_2008__346_5-6_351_0, author = {Ciarlet, Philippe G. and Ciarlet, Patrick Jr.}, title = {A new approach for approximating linear elasticity problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {351--356}, publisher = {Elsevier}, volume = {346}, number = {5-6}, year = {2008}, doi = {10.1016/j.crma.2008.01.014}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.01.014/} }
TY - JOUR AU - Ciarlet, Philippe G. AU - Ciarlet, Patrick Jr. TI - A new approach for approximating linear elasticity problems JO - Comptes Rendus. Mathématique PY - 2008 SP - 351 EP - 356 VL - 346 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.01.014/ DO - 10.1016/j.crma.2008.01.014 LA - en ID - CRMATH_2008__346_5-6_351_0 ER -
%0 Journal Article %A Ciarlet, Philippe G. %A Ciarlet, Patrick Jr. %T A new approach for approximating linear elasticity problems %J Comptes Rendus. Mathématique %D 2008 %P 351-356 %V 346 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.01.014/ %R 10.1016/j.crma.2008.01.014 %G en %F CRMATH_2008__346_5-6_351_0
Ciarlet, Philippe G.; Ciarlet, Patrick Jr. A new approach for approximating linear elasticity problems. Comptes Rendus. Mathématique, Tome 346 (2008) no. 5-6, pp. 351-356. doi : 10.1016/j.crma.2008.01.014. http://www.numdam.org/articles/10.1016/j.crma.2008.01.014/
[1] On the characterization of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., Volume 86 (2006), pp. 116-132
[2] Finite element exterior calculus, homological techniques, and applications, Acta Numer., Volume 15 (2006), pp. 1-155
[3] Mixed finite element methods for elasticity, Numer. Math., Volume 92 (2002), pp. 401-419
[4] Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 259-271
[5] P.G. Ciarlet, P. Ciarlet Jr., Direct computation of stresses in linearized elasticity, Parts 1 and 2, in preparation
[6] P.G. Ciarlet, P. Ciarlet Jr., S. Sauter, Finite element methods for the Saint Venant approach in elasticity, in preparation
[7] Les Inéquations en Mécanique et en Physique, Inequalities in Mechanics and Physics, Dunod, 1972 (English translation:, 1976, Springer-Verlag)
[8] Mixed finite elements in , Numer. Math., Volume 35 (1980), pp. 315-341
[9] Théorie des Distributions, Hermann, Paris, 1966
Cité par Sources :