Topology/Dynamical Systems
Rigidity of magnetic flows for compact surfaces
[Rigidité des flots magnétiques sur des surfaces compactes]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 5-6, pp. 313-316.

Soit ϕt:T1MT1M le flot magnétique du pair (g,Ω). Nous demonstrons que si ϕt preserve un feuilletage C2,1 de codimension 1, alors la courbure de (M,g) est une constante non positive et la forme Ω est le produit d'une constante par la forme d'aire de (M,g).

Let ϕt:T1MT1M be the magnetic flow of the pair (g,Ω). We show that if ϕt preserves a C2,1 codimension one foliation then (M,g) has constant, nonpositive Gaussian curvature and Ω is a constant multiple of the area form of (M,g). So if the genus of M is greater than one, the flow is either Anosov or conjugate to a horocycle flow. If M is a torus, the flow is actually geodesic and flat.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.01.011
Gomes, José Barbosa 1 ; Ruggiero, Rafael O. 2

1 Universidade Federal de Juiz de Fora, Dep. Matemática, Campus Universitário, Juiz de Fora, MG, Brasil 36036-330
2 Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio, Dep. Matemática, Rua Marquês de São Vicente, 225 – Gávea, Rio de Janeiro, RJ, Brasil 22453-900
@article{CRMATH_2008__346_5-6_313_0,
     author = {Gomes, Jos\'e Barbosa and Ruggiero, Rafael O.},
     title = {Rigidity of magnetic flows for compact surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {313--316},
     publisher = {Elsevier},
     volume = {346},
     number = {5-6},
     year = {2008},
     doi = {10.1016/j.crma.2008.01.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.01.011/}
}
TY  - JOUR
AU  - Gomes, José Barbosa
AU  - Ruggiero, Rafael O.
TI  - Rigidity of magnetic flows for compact surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 313
EP  - 316
VL  - 346
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.01.011/
DO  - 10.1016/j.crma.2008.01.011
LA  - en
ID  - CRMATH_2008__346_5-6_313_0
ER  - 
%0 Journal Article
%A Gomes, José Barbosa
%A Ruggiero, Rafael O.
%T Rigidity of magnetic flows for compact surfaces
%J Comptes Rendus. Mathématique
%D 2008
%P 313-316
%V 346
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.01.011/
%R 10.1016/j.crma.2008.01.011
%G en
%F CRMATH_2008__346_5-6_313_0
Gomes, José Barbosa; Ruggiero, Rafael O. Rigidity of magnetic flows for compact surfaces. Comptes Rendus. Mathématique, Tome 346 (2008) no. 5-6, pp. 313-316. doi : 10.1016/j.crma.2008.01.011. http://www.numdam.org/articles/10.1016/j.crma.2008.01.011/

[1] Bialy, M.L. Rigidity for periodic magnetic fields, Ergodic Theory Dynam. Systems, Volume 20 (2000), pp. 1619-1626

[2] Ghys, E. Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup., Volume 20 (1987), pp. 251-270

[3] Ghys, E. Rigidité différentiable des groupes Fuchsiens, Publ. Math. I.H.E.S., Volume 78 (1993), pp. 163-185

[4] Gomes, J.B.; Ruggiero, R.O. Rigidity of surfaces whose geodesic flows preserve smooth foliations of codimension 1, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 507-515

[5] Grognet, S. Flots magnétiques en courbure négative, Ergodic Theory Dynam. Systems, Volume 19 (1999), pp. 413-436

[6] Hurder, S.; Katok, A. Differentiability, rigidity and Godbillon–Vey classes for Anosov flows, Publ. Math. I.H.E.S., Volume 72 (1990), pp. 5-61

[7] Paternain, G.P. Magnetic rigidity of horocycle flows, Pacific J. Math., Volume 225 (2006) no. 2, pp. 301-323

[8] Paternain, G.P. Regularity of weak foliations for thermostats, Nonlinearity, Volume 20 (2007), pp. 87-104

[9] Paternain, G.P.; Paternain, M. On Anosov energy levels of convex Hamiltonian systems, Math. Z., Volume 217 (1994), pp. 367-376

[10] Paternain, G.P.; Paternain, M. Anosov geodesic flows and twisted symplectic structures (Ledrappier, F.; Lewowics, J.; Newhouse, S., eds.), Pitman Research Notes in Mathematics Series, vol. 362, Addison-Wesley, Longman, Harlow, 1996, pp. 132-145

[11] Raby, G. Invariance des classes de Godbillon–Vey par C1-diffeomorphismes, Ann. Inst. Fourier, Volume 38 (1998) no. 1, pp. 205-213

Cité par Sources :