Soit le flot magnétique du pair . Nous demonstrons que si preserve un feuilletage de codimension 1, alors la courbure de est une constante non positive et la forme Ω est le produit d'une constante par la forme d'aire de .
Let be the magnetic flow of the pair . We show that if preserves a codimension one foliation then has constant, nonpositive Gaussian curvature and Ω is a constant multiple of the area form of . So if the genus of M is greater than one, the flow is either Anosov or conjugate to a horocycle flow. If M is a torus, the flow is actually geodesic and flat.
Accepté le :
Publié le :
@article{CRMATH_2008__346_5-6_313_0, author = {Gomes, Jos\'e Barbosa and Ruggiero, Rafael O.}, title = {Rigidity of magnetic flows for compact surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {313--316}, publisher = {Elsevier}, volume = {346}, number = {5-6}, year = {2008}, doi = {10.1016/j.crma.2008.01.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.01.011/} }
TY - JOUR AU - Gomes, José Barbosa AU - Ruggiero, Rafael O. TI - Rigidity of magnetic flows for compact surfaces JO - Comptes Rendus. Mathématique PY - 2008 SP - 313 EP - 316 VL - 346 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.01.011/ DO - 10.1016/j.crma.2008.01.011 LA - en ID - CRMATH_2008__346_5-6_313_0 ER -
%0 Journal Article %A Gomes, José Barbosa %A Ruggiero, Rafael O. %T Rigidity of magnetic flows for compact surfaces %J Comptes Rendus. Mathématique %D 2008 %P 313-316 %V 346 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.01.011/ %R 10.1016/j.crma.2008.01.011 %G en %F CRMATH_2008__346_5-6_313_0
Gomes, José Barbosa; Ruggiero, Rafael O. Rigidity of magnetic flows for compact surfaces. Comptes Rendus. Mathématique, Tome 346 (2008) no. 5-6, pp. 313-316. doi : 10.1016/j.crma.2008.01.011. http://www.numdam.org/articles/10.1016/j.crma.2008.01.011/
[1] Rigidity for periodic magnetic fields, Ergodic Theory Dynam. Systems, Volume 20 (2000), pp. 1619-1626
[2] Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup., Volume 20 (1987), pp. 251-270
[3] Rigidité différentiable des groupes Fuchsiens, Publ. Math. I.H.E.S., Volume 78 (1993), pp. 163-185
[4] Rigidity of surfaces whose geodesic flows preserve smooth foliations of codimension 1, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 507-515
[5] Flots magnétiques en courbure négative, Ergodic Theory Dynam. Systems, Volume 19 (1999), pp. 413-436
[6] Differentiability, rigidity and Godbillon–Vey classes for Anosov flows, Publ. Math. I.H.E.S., Volume 72 (1990), pp. 5-61
[7] Magnetic rigidity of horocycle flows, Pacific J. Math., Volume 225 (2006) no. 2, pp. 301-323
[8] Regularity of weak foliations for thermostats, Nonlinearity, Volume 20 (2007), pp. 87-104
[9] On Anosov energy levels of convex Hamiltonian systems, Math. Z., Volume 217 (1994), pp. 367-376
[10] Anosov geodesic flows and twisted symplectic structures (Ledrappier, F.; Lewowics, J.; Newhouse, S., eds.), Pitman Research Notes in Mathematics Series, vol. 362, Addison-Wesley, Longman, Harlow, 1996, pp. 132-145
[11] Invariance des classes de Godbillon–Vey par -diffeomorphismes, Ann. Inst. Fourier, Volume 38 (1998) no. 1, pp. 205-213
Cité par Sources :