Dans l'anneau de Grothendieck des variétés, les classes de deux diviseurs thêta d'une même variété abélienne ne sont pas nécessairement congruentes modulo la classe de la droite affine.
The classes of two theta divisors on an Abelian variety in the naive Grothendieck ring of varieties need not be congruent modulo the class of the affine line.
Accepté le :
Publié le :
@article{CRMATH_2008__346_5-6_301_0, author = {Heinloth, Franziska}, title = {A note on congruences for theta divisors}, journal = {Comptes Rendus. Math\'ematique}, pages = {301--303}, publisher = {Elsevier}, volume = {346}, number = {5-6}, year = {2008}, doi = {10.1016/j.crma.2008.01.005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.01.005/} }
TY - JOUR AU - Heinloth, Franziska TI - A note on congruences for theta divisors JO - Comptes Rendus. Mathématique PY - 2008 SP - 301 EP - 303 VL - 346 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.01.005/ DO - 10.1016/j.crma.2008.01.005 LA - en ID - CRMATH_2008__346_5-6_301_0 ER -
Heinloth, Franziska. A note on congruences for theta divisors. Comptes Rendus. Mathématique, Tome 346 (2008) no. 5-6, pp. 301-303. doi : 10.1016/j.crma.2008.01.005. http://www.numdam.org/articles/10.1016/j.crma.2008.01.005/
[1] Torification and factorization of birational maps, J. Amer. Math. Soc., Volume 15 (2002) no. 3, pp. 531-572
[2] On Witt vector cohomology for singular varieties, Compos. Math., Volume 143 (2007) no. 2, pp. 363-392
[3] Descent, motives and K-theory, J. Reine Angew. Math., Volume 478 (1996), pp. 127-176
[4] Un critère d'extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci., Volume 95 (2002), pp. 1-91
[5] Existence of curves of genus two on a product of two elliptic curves, J. Math. Soc. Japan, Volume 17 (1965), pp. 1-16
[6] Motivic measures and stable birational geometry, Moscow Math. J., Volume 3 (2003) no. 1, pp. 85-95
[7] Toroidal varieties and the weak factorization theorem, Invent. Math., Volume 154 (2003) no. 2, pp. 223-331
Cité par Sources :