Partial Differential Equations
Existence of topologically cylindrical shocks
[Existence des chocs topologiquement cylindrique]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 5-6, pp. 283-286.

Dans cette Note la stabilité multidimensionnelle des chocs cylindrique et de l'existence d'une structure perturbée voisine est présentée. Ceci fournit un exemple explicite d'une structure non planairepour laquelle la condition de stabilité uniforme de Kreiss–Lopatinsky–Majda est satisfaite.

In this Note the multidimensional stability of cylindrical shock profiles and the existence of a nearby perturbed structure is presented for the full Euler equations. This provides an example of a nonplanar structure for which the uniform Kreiss–Lopatinski–Majda stability condition can be explicitly verified.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.01.003
Costanzino, Nicola 1

1 Department of Mathematics, Pennsylvania State University, University Park, PA, 16802, USA
@article{CRMATH_2008__346_5-6_283_0,
     author = {Costanzino, Nicola},
     title = {Existence of topologically cylindrical shocks},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {283--286},
     publisher = {Elsevier},
     volume = {346},
     number = {5-6},
     year = {2008},
     doi = {10.1016/j.crma.2008.01.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.01.003/}
}
TY  - JOUR
AU  - Costanzino, Nicola
TI  - Existence of topologically cylindrical shocks
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 283
EP  - 286
VL  - 346
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.01.003/
DO  - 10.1016/j.crma.2008.01.003
LA  - en
ID  - CRMATH_2008__346_5-6_283_0
ER  - 
%0 Journal Article
%A Costanzino, Nicola
%T Existence of topologically cylindrical shocks
%J Comptes Rendus. Mathématique
%D 2008
%P 283-286
%V 346
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.01.003/
%R 10.1016/j.crma.2008.01.003
%G en
%F CRMATH_2008__346_5-6_283_0
Costanzino, Nicola. Existence of topologically cylindrical shocks. Comptes Rendus. Mathématique, Tome 346 (2008) no. 5-6, pp. 283-286. doi : 10.1016/j.crma.2008.01.003. http://www.numdam.org/articles/10.1016/j.crma.2008.01.003/

[1] N. Costanzino, H.K. Jenssen, Multidimensional stability of shocks with geometric structure, in preparation

[2] Costanzino, N.; Jenssen, H.K.; Lyng, G.; Williams, M. Existence and stability of curved multidimensional detonation fronts, Indiana Univ. Math. J., Volume 56 (2007) no. 3, pp. 1405-1462

[3] E. Endres, H.K. Jenssen,, M. Williams, Symmetric Euler and Navier–Stokes shocks in stationary barotropic flow on a bounded domain, Preprint

[4] Jenssen, H.K.; Lyng, G. The Lopatinski condition for gas dynamics, Handbook of Fluid Mechanics, vol. III, North-Holland, Amsterdam, 2004, pp. 311-533 http://www.ams.org/mathscinet/search/publdoc.html?pg1=IID&s1=624956&r=9&mx-pid=2099037 appendix (pp. 507–524) to K. Zumbrun, Stability of Large-Amplitude Shock Waves of Compressible Navier–Stokes Equations

[5] Majda, A. The Stability of Multi-Dimensional Shock Fronts – A New Problem for Linear Hyperbolic Equations, Mem. Amer. Math. Soc., vol. 275, Amer. Math. Soc., Providence, RI, 1983

[6] Majda, A. The Existence of Multidimensional Shock Fronts, Mem. Amer. Math. Soc., vol. 281, Amer. Math. Soc., Providence, RI, 1983

[7] Métivier, G. Stability of multidimensional shocks, Advances in the Theory of Shock Waves, vol. 47, Birkhäuser, Boston, MA, 2001, pp. 25-103

[8] A. Mokrane, Problèmes mixtes hyperboliques nonlinéaires, Thèse, Université de Rennes I, 1987

Cité par Sources :