Differential Geometry
Approximating W2,2 isometric immersions
[Approximation de W2,2 par des immersions isométriques]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 189-192.

Soient SR2 un domaine lipschitzien borné et Wiso2,2(S;R3) l'ensemble Wiso2,2(S;R3)={uW2,2(S;R3):(u)T(u)=Idp.p.}. Sous une hypothèse supplémentaire de régularité sur la frontière ∂S (qui est satisfaite dans le cas où ∂S est continument différentiable par morceaux), nous prouvons que l'adhérence W2,2 de Wiso2,2(S;R3)C(S¯;R3) est Wiso2,2(S;R3).

Let SR2 be a bounded Lipschitz domain and set Wiso2,2(S;R3)={uW2,2(S;R3):(u)T(u)=Ida.e.}. Under an additional regularity condition on the boundary ∂S (which is satisfied if it is piecewise continuously differentiable) we prove that the W2,2 closure of Wiso2,2(S;R3)C(S¯;R3) agrees with Wiso2,2(S;R3).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.01.001
Hornung, Peter 1

1 Fachbereich Mathematik, Universität Duisburg-Essen, 47048 Duisburg, Germany
@article{CRMATH_2008__346_3-4_189_0,
     author = {Hornung, Peter},
     title = {Approximating $ {W}^{2,2}$ isometric immersions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {189--192},
     publisher = {Elsevier},
     volume = {346},
     number = {3-4},
     year = {2008},
     doi = {10.1016/j.crma.2008.01.001},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2008.01.001/}
}
TY  - JOUR
AU  - Hornung, Peter
TI  - Approximating $ {W}^{2,2}$ isometric immersions
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 189
EP  - 192
VL  - 346
IS  - 3-4
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2008.01.001/
DO  - 10.1016/j.crma.2008.01.001
LA  - en
ID  - CRMATH_2008__346_3-4_189_0
ER  - 
%0 Journal Article
%A Hornung, Peter
%T Approximating $ {W}^{2,2}$ isometric immersions
%J Comptes Rendus. Mathématique
%D 2008
%P 189-192
%V 346
%N 3-4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2008.01.001/
%R 10.1016/j.crma.2008.01.001
%G en
%F CRMATH_2008__346_3-4_189_0
Hornung, Peter. Approximating $ {W}^{2,2}$ isometric immersions. Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 189-192. doi : 10.1016/j.crma.2008.01.001. https://www.numdam.org/articles/10.1016/j.crma.2008.01.001/

[1] Ball, J.M. Singularities and computation of minimizers for variational problems, London Math. Soc. Lecture Note Ser., vol. 284, 2001, pp. 1-20

[2] Conti, S.; Dolzmann, G. Derivation of a plate theory for incompressible materials, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 541-544

[3] Friesecke, G.; James, R.D.; Müller, S. Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 173-178

[4] Friesecke, G.; James, R.D.; Müller, S. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506

[5] P. Hornung, A density result for W2,2 isometric immersions, preprint, available under http://analysis.math.uni-duisburg.de/publications/preprints/Hornung4.pdf

[6] B. Kirchheim, Geometry and rigidity of microstructures, Habilitation thesis, University of Leipzig, 2001

[7] Müller, S.; Pakzad, M.R. Regularity properties of isometric immersions, Math. Z., Volume 251 (2005) no. 2, pp. 313-331

[8] Pakzad, M.R. On the Sobolev space of isometric immersions, J. Differential Geom., Volume 66 (2004) no. 1, pp. 47-69

[9] Pantz, O. Une justification partielle du modèle de plaque en flexion par Γ-convergence, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2001), pp. 587-592

[10] Pantz, O. On the justification of the nonlinear inextensional plate model, Arch. Ration. Mech. Anal., Volume 167 (2003), pp. 179-209

  • Bartels, Sören; Palus, Christian Stable gradient flow discretizations for simulating bilayer plate bending with isometry and obstacle constraints, IMA Journal of Numerical Analysis, Volume 42 (2022) no. 3, p. 1903 | DOI:10.1093/imanum/drab050
  • Bartels, Sören; Meyer, Frank; Palus, Christian Simulating Self-Avoiding Isometric Plate Bending, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 3, p. A1475 | DOI:10.1137/21m1440001
  • Jerrard, Robert L.; Pakzad, Mohammad Reza Sobolev spaces of isometric immersions of arbitrary dimension and co-dimension, Annali di Matematica Pura ed Applicata (1923 -), Volume 196 (2017) no. 2, p. 687 | DOI:10.1007/s10231-016-0591-6
  • Kupferman, Raz Bending energy of buckled edge dislocations, Physical Review E, Volume 96 (2017) no. 6 | DOI:10.1103/physreve.96.063002
  • Cherdantsev, Mikhail; Cherednichenko, Kirill Bending of thin periodic plates, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 4, p. 4079 | DOI:10.1007/s00526-015-0932-0
  • Bartels, Sören Bending Problems, Numerical Methods for Nonlinear Partial Differential Equations, Volume 47 (2015), p. 217 | DOI:10.1007/978-3-319-13797-1_8
  • Hornung, Peter; Lewicka, Marta; Pakzad, Mohammad Reza Infinitesimal Isometries on Developable Surfaces and Asymptotic Theories for Thin Developable Shells, Journal of Elasticity, Volume 111 (2013) no. 1, p. 1 | DOI:10.1007/s10659-012-9391-4
  • Hornung, Peter Approximation of Flat W 2,2 Isometric Immersions by Smooth Ones, Archive for Rational Mechanics and Analysis, Volume 199 (2011) no. 3, p. 1015 | DOI:10.1007/s00205-010-0374-y
  • Lewicka, Marta; Mora, Maria Giovanna; Pakzad, Mohammad Reza The Matching Property of Infinitesimal Isometries on Elliptic Surfaces and Elasticity of Thin Shells, Archive for Rational Mechanics and Analysis, Volume 200 (2011) no. 3, p. 1023 | DOI:10.1007/s00205-010-0387-6
  • Conti, Sergio; Dolzmann, Georg Γ-convergence for incompressible elastic plates, Calculus of Variations and Partial Differential Equations, Volume 34 (2009) no. 4, p. 531 | DOI:10.1007/s00526-008-0194-1

Cité par 10 documents. Sources : Crossref