Soient
Let
Accepté le :
Publié le :
@article{CRMATH_2008__346_3-4_189_0, author = {Hornung, Peter}, title = {Approximating $ {W}^{2,2}$ isometric immersions}, journal = {Comptes Rendus. Math\'ematique}, pages = {189--192}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2008.01.001}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2008.01.001/} }
TY - JOUR AU - Hornung, Peter TI - Approximating $ {W}^{2,2}$ isometric immersions JO - Comptes Rendus. Mathématique PY - 2008 SP - 189 EP - 192 VL - 346 IS - 3-4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.01.001/ DO - 10.1016/j.crma.2008.01.001 LA - en ID - CRMATH_2008__346_3-4_189_0 ER -
Hornung, Peter. Approximating $ {W}^{2,2}$ isometric immersions. Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 189-192. doi : 10.1016/j.crma.2008.01.001. https://www.numdam.org/articles/10.1016/j.crma.2008.01.001/
[1] Singularities and computation of minimizers for variational problems, London Math. Soc. Lecture Note Ser., vol. 284, 2001, pp. 1-20
[2] Derivation of a plate theory for incompressible materials, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 541-544
[3] Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 173-178
[4] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[5] P. Hornung, A density result for
[6] B. Kirchheim, Geometry and rigidity of microstructures, Habilitation thesis, University of Leipzig, 2001
[7] Regularity properties of isometric immersions, Math. Z., Volume 251 (2005) no. 2, pp. 313-331
[8] On the Sobolev space of isometric immersions, J. Differential Geom., Volume 66 (2004) no. 1, pp. 47-69
[9] Une justification partielle du modèle de plaque en flexion par Γ-convergence, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2001), pp. 587-592
[10] On the justification of the nonlinear inextensional plate model, Arch. Ration. Mech. Anal., Volume 167 (2003), pp. 179-209
- Stable gradient flow discretizations for simulating bilayer plate bending with isometry and obstacle constraints, IMA Journal of Numerical Analysis, Volume 42 (2022) no. 3, p. 1903 | DOI:10.1093/imanum/drab050
- Simulating Self-Avoiding Isometric Plate Bending, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 3, p. A1475 | DOI:10.1137/21m1440001
- Sobolev spaces of isometric immersions of arbitrary dimension and co-dimension, Annali di Matematica Pura ed Applicata (1923 -), Volume 196 (2017) no. 2, p. 687 | DOI:10.1007/s10231-016-0591-6
- Bending energy of buckled edge dislocations, Physical Review E, Volume 96 (2017) no. 6 | DOI:10.1103/physreve.96.063002
- Bending of thin periodic plates, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 4, p. 4079 | DOI:10.1007/s00526-015-0932-0
- Bending Problems, Numerical Methods for Nonlinear Partial Differential Equations, Volume 47 (2015), p. 217 | DOI:10.1007/978-3-319-13797-1_8
- Infinitesimal Isometries on Developable Surfaces and Asymptotic Theories for Thin Developable Shells, Journal of Elasticity, Volume 111 (2013) no. 1, p. 1 | DOI:10.1007/s10659-012-9391-4
- Approximation of Flat W 2,2 Isometric Immersions by Smooth Ones, Archive for Rational Mechanics and Analysis, Volume 199 (2011) no. 3, p. 1015 | DOI:10.1007/s00205-010-0374-y
- The Matching Property of Infinitesimal Isometries on Elliptic Surfaces and Elasticity of Thin Shells, Archive for Rational Mechanics and Analysis, Volume 200 (2011) no. 3, p. 1023 | DOI:10.1007/s00205-010-0387-6
- Γ-convergence for incompressible elastic plates, Calculus of Variations and Partial Differential Equations, Volume 34 (2009) no. 4, p. 531 | DOI:10.1007/s00526-008-0194-1
Cité par 10 documents. Sources : Crossref