Differential Geometry
Modular classes of Loday algebroids
[Algébroïdes de Loday]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 193-198.

Nous introduisons le concept d'algébroïde de Loday, une généralisation des algébroïdes de Courant, en définissons la cohomologie naïve et la classe modulaire, et nous montrons que la classe modulaire du double d'un bigébroïde de Lie est nulle. Dans le cas des algébroïdes de Courant, nous décrivons la relation entre les cohomologies naïve et standard et nous conjecturons qu'elles sont isomorphes quand l'algébroïde de Courant est transitif.

We introduce the concept of Loday algebroids, a generalization of Courant algebroids. We define the naive cohomology and modular class of a Loday algebroid, and we show that the modular class of the double of a Lie bialgebroid vanishes. For Courant algebroids, we describe the relation between the naive and standard cohomologies and we conjecture that they are isomorphic when the Courant algebroid is transitive.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.12.012
Stiénon, Mathieu 1 ; Xu, Ping 2

1 Departement Mathematik, Eidgenössische Technische Hochschule Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland
2 Department of Mathematics, Pennsylvania State University, 109, McAllister Building, University Park, PA 16802, USA
@article{CRMATH_2008__346_3-4_193_0,
     author = {Sti\'enon, Mathieu and Xu, Ping},
     title = {Modular classes of {Loday} algebroids},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {193--198},
     publisher = {Elsevier},
     volume = {346},
     number = {3-4},
     year = {2008},
     doi = {10.1016/j.crma.2007.12.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.12.012/}
}
TY  - JOUR
AU  - Stiénon, Mathieu
AU  - Xu, Ping
TI  - Modular classes of Loday algebroids
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 193
EP  - 198
VL  - 346
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.12.012/
DO  - 10.1016/j.crma.2007.12.012
LA  - en
ID  - CRMATH_2008__346_3-4_193_0
ER  - 
%0 Journal Article
%A Stiénon, Mathieu
%A Xu, Ping
%T Modular classes of Loday algebroids
%J Comptes Rendus. Mathématique
%D 2008
%P 193-198
%V 346
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.12.012/
%R 10.1016/j.crma.2007.12.012
%G en
%F CRMATH_2008__346_3-4_193_0
Stiénon, Mathieu; Xu, Ping. Modular classes of Loday algebroids. Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 193-198. doi : 10.1016/j.crma.2007.12.012. http://www.numdam.org/articles/10.1016/j.crma.2007.12.012/

[1] Evens, S.; Lu, J.-H.; Weinstein, A. Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford (2), Volume 50 (1999), pp. 417-436

[2] Grabowski, J.; Urbański, P. Algebroids—general differential calculi on vector bundles, J. Geom. Phys., Volume 31 (1999) no. 2–3, pp. 111-141

[3] Huebschmann, J. Duality for Lie–Rinehart algebras and the modular class, J. Reine Angew. Math., Volume 510 (1999), pp. 103-159

[4] Ibanez, R.; de Leon, M.; Marrero, J.C.; Padrón, E. Leibniz algebroid associated with a Nambu–Poisson structure, J. Phys. A, Volume 32 (1999), pp. 8129-8144

[5] Kosmann-Schwarzbach, Y. From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier, Volume 46 (1996), pp. 1243-1274

[6] Kosmann-Schwarzbach, Y.; Weinstein, A. Relative modular classes of Lie algebroids, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 341 (2005) no. 8, pp. 509-514

[7] Liu, Z.-J.; Weinstein, A.; Xu, P. Manin triples for Lie bialgebroids, J. Differential Geom., Volume 45 (1997), pp. 547-574

[8] Loday, J.-L. Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math., Volume 39 (1993), pp. 269-293

[9] Roytenberg, D. On the structure of graded symplectic supermanifolds and Courant algebroids, Manchester, 2001 (Contemp. Math.), Volume vol. 315, Amer. Math. Soc., Providence, RI (2002), pp. 169-185

[10] Stiénon, M. Moser lemma in generalized complex geometry | arXiv

[11] Uchino, K. Remarks on the definition of a Courant algebroid, Lett. Math. Phys., Volume 60 (2002), pp. 171-175

[12] Wade, A. On some properties of Leibniz algebroids, Washington, DC, 2000, World Sci. Publ., River Edge, NJ (2002), pp. 65-78

Cité par Sources :