Nous introduisons le concept d'algébroïde de Loday, une généralisation des algébroïdes de Courant, en définissons la cohomologie naïve et la classe modulaire, et nous montrons que la classe modulaire du double d'un bigébroïde de Lie est nulle. Dans le cas des algébroïdes de Courant, nous décrivons la relation entre les cohomologies naïve et standard et nous conjecturons qu'elles sont isomorphes quand l'algébroïde de Courant est transitif.
We introduce the concept of Loday algebroids, a generalization of Courant algebroids. We define the naive cohomology and modular class of a Loday algebroid, and we show that the modular class of the double of a Lie bialgebroid vanishes. For Courant algebroids, we describe the relation between the naive and standard cohomologies and we conjecture that they are isomorphic when the Courant algebroid is transitive.
Accepté le :
Publié le :
@article{CRMATH_2008__346_3-4_193_0, author = {Sti\'enon, Mathieu and Xu, Ping}, title = {Modular classes of {Loday} algebroids}, journal = {Comptes Rendus. Math\'ematique}, pages = {193--198}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.12.012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.12.012/} }
TY - JOUR AU - Stiénon, Mathieu AU - Xu, Ping TI - Modular classes of Loday algebroids JO - Comptes Rendus. Mathématique PY - 2008 SP - 193 EP - 198 VL - 346 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.12.012/ DO - 10.1016/j.crma.2007.12.012 LA - en ID - CRMATH_2008__346_3-4_193_0 ER -
Stiénon, Mathieu; Xu, Ping. Modular classes of Loday algebroids. Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 193-198. doi : 10.1016/j.crma.2007.12.012. http://www.numdam.org/articles/10.1016/j.crma.2007.12.012/
[1] Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford (2), Volume 50 (1999), pp. 417-436
[2] Algebroids—general differential calculi on vector bundles, J. Geom. Phys., Volume 31 (1999) no. 2–3, pp. 111-141
[3] Duality for Lie–Rinehart algebras and the modular class, J. Reine Angew. Math., Volume 510 (1999), pp. 103-159
[4] Leibniz algebroid associated with a Nambu–Poisson structure, J. Phys. A, Volume 32 (1999), pp. 8129-8144
[5] From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier, Volume 46 (1996), pp. 1243-1274
[6] Relative modular classes of Lie algebroids, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 341 (2005) no. 8, pp. 509-514
[7] Manin triples for Lie bialgebroids, J. Differential Geom., Volume 45 (1997), pp. 547-574
[8] Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math., Volume 39 (1993), pp. 269-293
[9] On the structure of graded symplectic supermanifolds and Courant algebroids, Manchester, 2001 (Contemp. Math.), Volume vol. 315, Amer. Math. Soc., Providence, RI (2002), pp. 169-185
[10] Moser lemma in generalized complex geometry | arXiv
[11] Remarks on the definition of a Courant algebroid, Lett. Math. Phys., Volume 60 (2002), pp. 171-175
[12] On some properties of Leibniz algebroids, Washington, DC, 2000, World Sci. Publ., River Edge, NJ (2002), pp. 65-78
Cité par Sources :