Le lemme fondamental de Neyman–Pearson est généralisé au cas de g-probabilités. Sous des hypothèses de convexité, une condition suffisante et nécessaire caractérisant le test randomisé optimal est obtenue au moyen du principe du maximum dans le cadre du contrôle stochastique.
The Neyman–Pearson fundamental lemma is generalized under g-probability. With convexity assumptions, a sufficient and necessary condition which characterizes the optimal randomized tests is obtained via a maximum principle for stochastic control.
Accepté le :
Publié le :
@article{CRMATH_2008__346_3-4_209_0, author = {Ji, Shaolin and Zhou, Xun Yu}, title = {The {Neyman{\textendash}Pearson} lemma under \protect\emph{g}-probability}, journal = {Comptes Rendus. Math\'ematique}, pages = {209--212}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.12.007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.12.007/} }
TY - JOUR AU - Ji, Shaolin AU - Zhou, Xun Yu TI - The Neyman–Pearson lemma under g-probability JO - Comptes Rendus. Mathématique PY - 2008 SP - 209 EP - 212 VL - 346 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.12.007/ DO - 10.1016/j.crma.2007.12.007 LA - en ID - CRMATH_2008__346_3-4_209_0 ER -
%0 Journal Article %A Ji, Shaolin %A Zhou, Xun Yu %T The Neyman–Pearson lemma under g-probability %J Comptes Rendus. Mathématique %D 2008 %P 209-212 %V 346 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2007.12.007/ %R 10.1016/j.crma.2007.12.007 %G en %F CRMATH_2008__346_3-4_209_0
Ji, Shaolin; Zhou, Xun Yu. The Neyman–Pearson lemma under g-probability. Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 209-212. doi : 10.1016/j.crma.2007.12.007. http://www.numdam.org/articles/10.1016/j.crma.2007.12.007/
[1] Portfolio management with constraints, Math. Finance, Volume 17 (2007), pp. 319-343
[2] Ambiguity, risk and asset returns in continuous time, Econometrica, Volume 70 (2002), pp. 1403-1443
[3] Minimax pricing and Choquet pricing, Insurance: Mathematics and Economics, Volume 38 (2006), pp. 518-528
[4] Generalized Neyman–Pearson lemma via convex duality, Bernoulli, Volume 7 (2001), pp. 79-97
[5] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997), pp. 1-71
[6] A dynamic maximum principle for the optimization of recursive utilities under constraints, Ann. Appl. Probab., Volume 11 (2001), pp. 664-693
[7] Efficient hedging: cost versus shortfall risk, Finance Stochast., Volume 4 (2000), pp. 117-146
[8] Risk measures via g-expectations, Insurance: Mathematics and Economics (2006), pp. 19-34
[9] Mathematical Theory of Statistics, Walter de Gruyter & Co., Berlin, 1985
[10] Minimax tests and the Neyman–Pearson lemma for capacities, Ann. Statist., Volume 1 (1973), pp. 251-263
[11] S. Ji, S. Peng, Terminal perturbation method for the backward approach to continuous-time mean-variance portfolio selection, Stochastic Process. Appl. (2008), , in press | DOI
[12] A maximum principle for stochastic optimal control with terminal state constraints, and its applications, Commun. Inf. Systems, Volume 6 (2006), pp. 321-337 (a special issue dedicated to Tyrone Duncan on the occasion of his 65th birthday)
[13] Backward stochastic differential equations and related g-expectation (El Karoui, N.; Mazliak, L., eds.), Backward Stochastic Differential Equations, Pitman Res. Notes Math. Ser., vol. 364, 1997, pp. 141-159
Cité par Sources :
⁎ The authors thank the partial support from the National Basic Research Program of China (973 Program, No. 2007CB814900), the RGC Earmark Grant No. 418606, and a start-up fund at Oxford.
⁎⁎ This Note is the succinct version of a text on file for five years in the Academy Archives.