[Processus de Markov associés aux résolvants sur , applications aux formes de Dirichlet qusi-régulières et aux équations différentielles stochastiques]
Nous montrons que à toute résolvante sous-markovienne continue sur , où est un espace mesurable de Lusin et μ est une mesure σ-finie sur , on peut associer un processus droit sur un espace topologique de Lusin contenant E comme un sousensemble borélien finement dense. Nous donnons des conditions sufficientes sur le générateur infinitesimal de la résolvante tel que l'espace d'états du processus soit E. Nous obtenons deux applications : (i) une réponse à une question posée par G. Mokobodzki sur l'existence d'une topologie de Lusin sur E ayant comme tribue borélienne, telle que une forme de Dirichlet donnée sur devienne quasi-régulière ; (ii) on résoudre des équations différentielles stochastiques sur des espaces de Hilbert, dans le sense du problème de martingale.
We show that every -resolvent on , where is a Lusin measurable space and μ is a σ-finite measure on , has an associate sufficiently regular Markov process on a (larger) Lusin topological space containing E as a Borel subset. We give general conditions on the resolvent's generator such that the above process lives on E. We present two applications: (i) we settle a question of G. Mokobodzki on the existence of a (Lusin) topology on E having as Borel σ-algebra such that a given Dirichlet form on becomes quasi-regular; (ii) we solve stochastic differential equations on Hilbert spaces in the sense of a martingale problem.
Accepté le :
Publié le :
@article{CRMATH_2008__346_5-6_323_0, author = {Beznea, Lucian and Boboc, Nicu and R\"ockner, Michael}, title = {Markov processes associated with $ {L}^{p}$-resolvents, applications to quasi-regular {Dirichlet} forms and stochastic differential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {323--328}, publisher = {Elsevier}, volume = {346}, number = {5-6}, year = {2008}, doi = {10.1016/j.crma.2007.12.005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.12.005/} }
TY - JOUR AU - Beznea, Lucian AU - Boboc, Nicu AU - Röckner, Michael TI - Markov processes associated with $ {L}^{p}$-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations JO - Comptes Rendus. Mathématique PY - 2008 SP - 323 EP - 328 VL - 346 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.12.005/ DO - 10.1016/j.crma.2007.12.005 LA - en ID - CRMATH_2008__346_5-6_323_0 ER -
%0 Journal Article %A Beznea, Lucian %A Boboc, Nicu %A Röckner, Michael %T Markov processes associated with $ {L}^{p}$-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations %J Comptes Rendus. Mathématique %D 2008 %P 323-328 %V 346 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2007.12.005/ %R 10.1016/j.crma.2007.12.005 %G en %F CRMATH_2008__346_5-6_323_0
Beznea, Lucian; Boboc, Nicu; Röckner, Michael. Markov processes associated with $ {L}^{p}$-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations. Comptes Rendus. Mathématique, Tome 346 (2008) no. 5-6, pp. 323-328. doi : 10.1016/j.crma.2007.12.005. http://www.numdam.org/articles/10.1016/j.crma.2007.12.005/
[1] A note on quasicontinuous kernels representing quasi-linear positive maps, Forum Math., Volume 3 (1991), pp. 389-400
[2] Potential Theory and Right Processes, Kluwer Acad. Publishers, 2004
[3] Quasi regular Dirichlet forms and -resolvents on measurable spaces, Potential Anal., Volume 25 (2006), pp. 269-282
[4] Markov processes associated with -resolvents and applications to stochastic differential equations on Hilbert space, J. Evol. Equ., Volume 6 (2006), pp. 745-772
[5] Processus de Markov associé à une forme de Dirichlet non symétrique, Z. Wahrsch. Verw. Geb., Volume 33 (1975), pp. 139-154
[6] Singular dissipative stochastic equations in Hilbert spaces, Probab. Theory Rel. Fields, Volume 124 (2002), pp. 261-303
[7] On the quasi-regularity of semi-Dirichlet forms, Potential Anal., Volume 15 (2001), pp. 151-185
[8] Markov processes associated with semi-Dirichlet forms, Osaka J. Math., Volume 32 (1995), pp. 97-119
[9] Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, 1992
[10] Quasi-regular Dirichlet forms: examples and counterexamples, Canad. J. Math., Volume 47 (1995), pp. 165-200
[11] The theory of generalized Dirichlet forms and its applications in analysis and stochastics, Mem. Amer. Math. Soc., Volume 142 (1999), p. 678
Cité par Sources :