Harmonic Analysis/Mathematical Analysis
Fourier restriction, polynomial curves and a geometric inequality
[Restrictions de Fourier et courbes polynomiales ; une inégalité géométrique]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 1-2, pp. 45-48.

Le résultat que nous annonçons sur les restrictions de Fourier vaut pour des courbes polynomiales générales dans Rd. Il permet de contrôler la norme Lq de la transformée de Fourier relativement à la mesure d'arc affine (dont nous rappelons la définition) à la norme Lp de la fonction, pour des p et q convenables. La borne est universelle pour toutes les courbes polynomiales de degré donné. Notre méthode repose sur une inégalité géométrique concernant les courbes polynomiales qui est intéressante en elle même, et s'applique à d'autres problèmes d'analyse harmonique euclidienne.

We announce a Fourier restriction result for general polynomial curves in Rd. Measuring the Fourier restriction with respect to the affine arclength measure of the curve, we obtain a universal bound for the class of all polynomial curves of bounded degree. Our method relies on establishing a geometric inequality for general polynomial curves which is of interest in its own right. There are applications of this geometric inequality to other problems in euclidean harmonic analysis.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.11.032
Dendrinos, Spyridon 1 ; Wright, James 2

1 Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
2 School of Mathematics, University of Edinburgh, JCMB, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
@article{CRMATH_2008__346_1-2_45_0,
     author = {Dendrinos, Spyridon and Wright, James},
     title = {Fourier restriction, polynomial curves and a geometric inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {45--48},
     publisher = {Elsevier},
     volume = {346},
     number = {1-2},
     year = {2008},
     doi = {10.1016/j.crma.2007.11.032},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.11.032/}
}
TY  - JOUR
AU  - Dendrinos, Spyridon
AU  - Wright, James
TI  - Fourier restriction, polynomial curves and a geometric inequality
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 45
EP  - 48
VL  - 346
IS  - 1-2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.11.032/
DO  - 10.1016/j.crma.2007.11.032
LA  - en
ID  - CRMATH_2008__346_1-2_45_0
ER  - 
%0 Journal Article
%A Dendrinos, Spyridon
%A Wright, James
%T Fourier restriction, polynomial curves and a geometric inequality
%J Comptes Rendus. Mathématique
%D 2008
%P 45-48
%V 346
%N 1-2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.11.032/
%R 10.1016/j.crma.2007.11.032
%G en
%F CRMATH_2008__346_1-2_45_0
Dendrinos, Spyridon; Wright, James. Fourier restriction, polynomial curves and a geometric inequality. Comptes Rendus. Mathématique, Tome 346 (2008) no. 1-2, pp. 45-48. doi : 10.1016/j.crma.2007.11.032. http://www.numdam.org/articles/10.1016/j.crma.2007.11.032/

[1] Abi-Khuzam, F.; Shayya, B. Fourier restriction to convex surfaces in R3, Publ. Mat., Volume 50 (2006), pp. 71-85

[2] Arkipov, G.I.; Karatsuba, A.A.; Chubarikov, V.N. Exponent of convergence of the singular integral in the Tarry problem, Dokl. Akad. Nauk SSSR, Volume 248 (1979) no. 2, pp. 268-272 (in Russian)

[3] J.G. Bak, D. Oberlin, A. Seeger, Restriction of Fourier transforms to curves and related oscillatory integrals, preprint

[4] Carbery, A.; Kenig, C.; Ziesler, S. Restriction for flat surfaces of revolution in R3, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 1905-1914

[5] Carbery, A.; Ricci, F.; Wright, J. Maximal functions and Hilbert transforms associated to polynomials, Rev. Mat. Iberoamericana, Volume 14 (1998) no. 1, pp. 117-144

[6] Carbery, A.; Ziesler, S. Restriction and decay for flat hypersurfaces, Publ. Mat., Volume 46 (2002), pp. 405-434

[7] Christ, M. On the restriction of the Fourier transform to curves: endpoint results and degenerate cases, Trans. Amer. Math. Soc., Volume 287 (1985), pp. 223-238

[8] Choi, Y. Convolution operators with affine arclength measures on plane curves, J. Korean Math. Soc., Volume 36 (1999), pp. 193-207

[9] Drury, S.W. Restriction of Fourier transforms to curves, Ann. Inst. Fourier, Volume 35 (1985), pp. 117-123

[10] Drury, S.W. Degenerate curves and harmonic analysis, Math. Proc. Cambridge Philos. Soc., Volume 108 (1990), pp. 89-96

[11] Drury, S.W.; Marshall, B. Fourier restriction theorems for curves with affine and Euclidean arclengths, Math. Proc. Cambridge Philos. Soc., Volume 97 (1985), pp. 111-125

[12] Drury, S.W.; Marshall, B. Fourier restriction theorems for degenerate curves, Math. Proc. Cambridge Philos. Soc., Volume 101 (1987), pp. 541-553

[13] Oberlin, D. Convolution with affine arclength measures in the plane, Proc. Amer. Math. Soc., Volume 127 (1999), pp. 3591-3592

[14] Oberlin, D. Fourier restriction estimates for affine arclength measures in the plane, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 3303-3305

[15] Oberlin, D. A uniform Fourier restriction theorem for affine surfaces in R3, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1195-1199

[16] Shayya, B. An affine restriction estimate in R3, Proc. Amer. Math. Soc., Volume 135 (2007) no. 4, pp. 1107-1113

[17] Sjölin, P. Fourier multipliers and estimates for the Fourier transform of measures carried by smooth curves in R2, Studia Math., Volume 51 (1974), pp. 169-182

[18] Steinig, J. On some rules of Laguerre's and systems of equal sums of like powers, Rend. Math., Volume 6 (1971) no. 4, pp. 629-644

Cité par Sources :