Partial Differential Equations/Optimal Control
Controllability of the Ginzburg–Landau equation
[Contrôlabilité de l'équation de Ginzburg–Landau]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 167-172.

Cette Note est dévolue à l'étude de la contrôlabilité frontière, ou interne, de l'équation complexe de Ginzburg–Landau. Des résultats de contrôlabilité à zéro sont obtenus au moyen d'une inégalité de Carleman et d'une analyse basée sur la théorie des opérateurs sectoriels.

This Note investigates the boundary controllability, as well as the internal controllability, of the complex Ginzburg–Landau equation. Null-controllability results are derived from a Carleman estimate and an analysis based upon the theory of sectorial operators.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.11.031
Rosier, Lionel 1, 2 ; Zhang, Bing-Yu 3

1 Centro de Modelamiento Matemático (CMM) and Departamento de Ingeniería Matemática, Universidad de Chile (UMI CNRS 2807), Avenida Blanco Encalada 2120, Casilla 170-3, Correo 3, Santiago, Chile
2 Institut Élie-Cartan, UMR 7502 UHP/CNRS/INRIA, B.P. 239, 54506 Vandoeuvre-lès-Nancy cedex, France
3 Department of Mathematical Sciences, University of Cincinnati,Cincinnati, OH 45221, USA
@article{CRMATH_2008__346_3-4_167_0,
     author = {Rosier, Lionel and Zhang, Bing-Yu},
     title = {Controllability of the {Ginzburg{\textendash}Landau} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {167--172},
     publisher = {Elsevier},
     volume = {346},
     number = {3-4},
     year = {2008},
     doi = {10.1016/j.crma.2007.11.031},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.11.031/}
}
TY  - JOUR
AU  - Rosier, Lionel
AU  - Zhang, Bing-Yu
TI  - Controllability of the Ginzburg–Landau equation
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 167
EP  - 172
VL  - 346
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.11.031/
DO  - 10.1016/j.crma.2007.11.031
LA  - en
ID  - CRMATH_2008__346_3-4_167_0
ER  - 
%0 Journal Article
%A Rosier, Lionel
%A Zhang, Bing-Yu
%T Controllability of the Ginzburg–Landau equation
%J Comptes Rendus. Mathématique
%D 2008
%P 167-172
%V 346
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.11.031/
%R 10.1016/j.crma.2007.11.031
%G en
%F CRMATH_2008__346_3-4_167_0
Rosier, Lionel; Zhang, Bing-Yu. Controllability of the Ginzburg–Landau equation. Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 167-172. doi : 10.1016/j.crma.2007.11.031. http://www.numdam.org/articles/10.1016/j.crma.2007.11.031/

[1] J.L. Boldrini, E. Fernandez-Cara, S. Guerrero, On the controllability of the Ginzburg–Landau equation, in preparation

[2] Fernandez-Cara, E. Null controllability of the semilinear heat equation, ESAIM Control Optim. Calc. Var., Volume 2 (1997), pp. 87-103

[3] Fu, X. A weighted identity for partial differential operators of second order and its applications, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 579-584

[4] Fursikov, A.V.; Imanuvilov, O.Y. Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1996

[5] Henry, D. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981

[6] Levermore, C.D.; Oliver, M. Distribution-valued initial data for the complex Ginzburg–Landau equation, Comm. Partial Differential Equations, Volume 22 (1997), pp. 39-48

[7] Levermore, C.D.; Oliver, M. Berkeley, CA, 1994, Lectures in Appl. Math., vol. 31, Amer. Math. Soc., Providence, RI (1996), pp. 141-190

[8] Mielke, A. The complex Ginzburg–Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity, Volume 10 (1997), pp. 199-222

[9] L. Rosier, B.-Y. Zhang, Null controllability of the complex Ginzburg–Landau equation, submitted for publication

Cité par Sources :