[Contrôlabilité de l'équation de Ginzburg–Landau]
This Note investigates the boundary controllability, as well as the internal controllability, of the complex Ginzburg–Landau equation. Null-controllability results are derived from a Carleman estimate and an analysis based upon the theory of sectorial operators.
Cette Note est dévolue à l'étude de la contrôlabilité frontière, ou interne, de l'équation complexe de Ginzburg–Landau. Des résultats de contrôlabilité à zéro sont obtenus au moyen d'une inégalité de Carleman et d'une analyse basée sur la théorie des opérateurs sectoriels.
Publié le :
Rosier, Lionel 1, 2 ; Zhang, Bing-Yu 3
@article{CRMATH_2008__346_3-4_167_0,
author = {Rosier, Lionel and Zhang, Bing-Yu},
title = {Controllability of the {Ginzburg{\textendash}Landau} equation},
journal = {Comptes Rendus. Math\'ematique},
pages = {167--172},
year = {2008},
publisher = {Elsevier},
volume = {346},
number = {3-4},
doi = {10.1016/j.crma.2007.11.031},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2007.11.031/}
}
TY - JOUR AU - Rosier, Lionel AU - Zhang, Bing-Yu TI - Controllability of the Ginzburg–Landau equation JO - Comptes Rendus. Mathématique PY - 2008 SP - 167 EP - 172 VL - 346 IS - 3-4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2007.11.031/ DO - 10.1016/j.crma.2007.11.031 LA - en ID - CRMATH_2008__346_3-4_167_0 ER -
%0 Journal Article %A Rosier, Lionel %A Zhang, Bing-Yu %T Controllability of the Ginzburg–Landau equation %J Comptes Rendus. Mathématique %D 2008 %P 167-172 %V 346 %N 3-4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2007.11.031/ %R 10.1016/j.crma.2007.11.031 %G en %F CRMATH_2008__346_3-4_167_0
Rosier, Lionel; Zhang, Bing-Yu. Controllability of the Ginzburg–Landau equation. Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 167-172. doi: 10.1016/j.crma.2007.11.031
[1] J.L. Boldrini, E. Fernandez-Cara, S. Guerrero, On the controllability of the Ginzburg–Landau equation, in preparation
[2] Null controllability of the semilinear heat equation, ESAIM Control Optim. Calc. Var., Volume 2 (1997), pp. 87-103
[3] A weighted identity for partial differential operators of second order and its applications, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 579-584
[4] Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1996
[5] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981
[6] Distribution-valued initial data for the complex Ginzburg–Landau equation, Comm. Partial Differential Equations, Volume 22 (1997), pp. 39-48
[7] Berkeley, CA, 1994, Lectures in Appl. Math., vol. 31, Amer. Math. Soc., Providence, RI (1996), pp. 141-190
[8] The complex Ginzburg–Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity, Volume 10 (1997), pp. 199-222
[9] L. Rosier, B.-Y. Zhang, Null controllability of the complex Ginzburg–Landau equation, submitted for publication
Cité par Sources :





