Cette Note est dévolue à l'étude de la contrôlabilité frontière, ou interne, de l'équation complexe de Ginzburg–Landau. Des résultats de contrôlabilité à zéro sont obtenus au moyen d'une inégalité de Carleman et d'une analyse basée sur la théorie des opérateurs sectoriels.
This Note investigates the boundary controllability, as well as the internal controllability, of the complex Ginzburg–Landau equation. Null-controllability results are derived from a Carleman estimate and an analysis based upon the theory of sectorial operators.
Publié le :
@article{CRMATH_2008__346_3-4_167_0, author = {Rosier, Lionel and Zhang, Bing-Yu}, title = {Controllability of the {Ginzburg{\textendash}Landau} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--172}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.11.031}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.11.031/} }
TY - JOUR AU - Rosier, Lionel AU - Zhang, Bing-Yu TI - Controllability of the Ginzburg–Landau equation JO - Comptes Rendus. Mathématique PY - 2008 SP - 167 EP - 172 VL - 346 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.11.031/ DO - 10.1016/j.crma.2007.11.031 LA - en ID - CRMATH_2008__346_3-4_167_0 ER -
%0 Journal Article %A Rosier, Lionel %A Zhang, Bing-Yu %T Controllability of the Ginzburg–Landau equation %J Comptes Rendus. Mathématique %D 2008 %P 167-172 %V 346 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2007.11.031/ %R 10.1016/j.crma.2007.11.031 %G en %F CRMATH_2008__346_3-4_167_0
Rosier, Lionel; Zhang, Bing-Yu. Controllability of the Ginzburg–Landau equation. Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 167-172. doi : 10.1016/j.crma.2007.11.031. http://www.numdam.org/articles/10.1016/j.crma.2007.11.031/
[1] J.L. Boldrini, E. Fernandez-Cara, S. Guerrero, On the controllability of the Ginzburg–Landau equation, in preparation
[2] Null controllability of the semilinear heat equation, ESAIM Control Optim. Calc. Var., Volume 2 (1997), pp. 87-103
[3] A weighted identity for partial differential operators of second order and its applications, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 579-584
[4] Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1996
[5] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981
[6] Distribution-valued initial data for the complex Ginzburg–Landau equation, Comm. Partial Differential Equations, Volume 22 (1997), pp. 39-48
[7] Berkeley, CA, 1994, Lectures in Appl. Math., vol. 31, Amer. Math. Soc., Providence, RI (1996), pp. 141-190
[8] The complex Ginzburg–Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity, Volume 10 (1997), pp. 199-222
[9] L. Rosier, B.-Y. Zhang, Null controllability of the complex Ginzburg–Landau equation, submitted for publication
Cité par Sources :